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Abstract

This paper proposes a testing approach for spiking neural P systems, signifi-

cantly different from the past testing research for cell-like P systems. The pro-

posed method provides a solution to the state explosion problem by constructing

a series of approximations, using the concept of cover automaton and Angluin-

style model learning from queries, more precisely the Ll algorithm for learning

a finite cover automaton, adapted to the more general X-machine model. Fur-

thermore, the concept of idenfiability, which is an essential prerequisite for the

successful application of our method, but also a more general design charac-

teristic inspired from the testing practice, is introduced and investigated in the

context of spiking neural P systems. Identifiability of system’s components

(modules, methods, etc.) is a fundamental criterion used for assessing a sys-

tem’s testability since it allows the components of a system to be identified from

the behaviour produced in response to the inputs received and, consequently,

maximizes the effectiveness of the testing process.
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1. Introduction

Membrane computing is a branch of natural computing inspired by the struc-

ture and functioning of the living cells. This computation paradigm was intro-

duced in [34] and the models have been called membrane systems or P systems.

Due to a rapid and sustained development, an initial research monograph [35]

and, later on, a comprehensive handbook, covering both theoretical results and

applications [36], were published. A specific model of membrane computing,

called spiking neural P system, is inspired by the neuron cells. The model was

introduced in [21] and has been intensively investigated. A survey paper [38]

presents the key theoretical developments in this area and the main applications

of the model. Some of the most relevant applications of spiking neural P sys-

tems are in modelling arithmetic operations [30, 43, 29, 41, 45], error-tolerant

serial binary full-adder [31], skeletonizing images [14], solving combinatorial op-

timizations [44]. Fuzzy neural P systems are applied in solving fault diagnosis

problems [39, 42]. A special line of research in membrane systems (many of them

with respect to neural P systems) is dedicated to the formal analysis of these

systems. This includes formal semantics [5, 7, 12, 13], reversible computation

[1, 37, 3], causality [2, 32] and memory associated with these systems [11]. Test-

ing, especially model-based approach using membrane systems, is another type

of formal analysis of these systems looking at traces of execution (computation

pathways) defined with respect to certain formal principles. This approach is

also significant for validating applications of membrane systems. Testing is the

process of running a software system or program with the purpose of discovering

bugs. Testing is the main validation technique used in the industry. Even when

the model of the system has been formally verified, as it is the case with safety

critical applications, the system is still tested; this is because the behaviour of

the actual system implementation may differ from the verified model. Since

even for trivial programs exhaustive testing (i.e., running the program on all

its possible inputs) is impossible or at least impractical, test selection (or test

generation) is a major part of testing and various techniques exist. Essentially,

2



these seek to “cover” as much as possible of the program specification and/or

implementation so as to maximise the likelihood of fault detection when these

tests are run.

A major class of test generation techniques are grouped under the name of

black-box testing. In black-box testing (also called functional testing), tests

are derived from the requirements (or specification) and the implementation (or

system) under test is regarded as a black-box: tests are applied, and results

can be observed but nothing is known about the structure of implementation

(which is a black-box). In many cases in the software industry requirements are

expressed informally and so the test generation techniques are also informal. On

the other hand, when a formal model exists, test data may be selected in a more

rigorous way so that a certain level of coverage or fault detection is achieved.

Also, the existence of a model allows test generation to be automated, which is a

big plus when it comes to the practical applicability of such techniques. Black-

box testing in the presence of a formal model is called model-based testing.

Usually, state-based models, composed of states and transitions between states,

are used. The most important limitation of model-based testing is related to

the size of the model produced: as the number of state variables increases, the

number of states grows exponentially. This is called the state explosion problem.

Hence, a major challenge of model-based testing is devising techniques to reduce

or alleviate this problem.

The major limitation of (black box) testing, seen from the perspective of the

formal methods community, is that “program testing can be used to show the

presence of bugs, but never to show their absence!” (Edsger W. Dijkstra). This

is obviously true when tests are derived from an informal specification, but also,

to some extent in model-based testing since most test generation techniques are

aimed at achieving a certain coverage level of the model, which is not directly

linked with the absence of the errors. On the other hand, there are model-based

testing techniques that guarantee complete fault-detection, albeit under certain

(more or less restrictive) assumptions. Suppose M is the model of the system

and I the implementation under test. Naturally, in black-box testing I is not
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known, but one can define a fault model, a set C of models such that, if the

model of the implementation under test I belongs to C and I passes all tests, I

is guaranteed to be fault-free (its model is functionally equivalent to M). One

well-known example of such techniques is the W -method [10]. Here, the model

is a finite state machine (more precisely, the Mealy machine variant) and the

fault model is, for a given k ≥ 0, the set of all Mealy machines whose number

of states does not exceed the number of states n of M by more than k. The

downside is that the size of the test suite generated by the method is exponential

in k. However, when the implementation is relatively close to the model, k is

normally relatively low, and so the total size of the test suite is a polynomial of

low degree (in the size of the input alphabet and the size of the state set).

Model based testing approaches have been introduced and studied for cell-

like P systems [16, 24, 17]. Also, mutation testing for the same class of P systems

has been considered [25]. However, although important applications of spiking

neural P systems exist, to the best of our knowledge, testing of these models

has not been approached yet.

This paper proposes a testing method for spiking neural P systems. The

underlying test generation strategy is based on a generalization of theW -method

(for this, the spiking neural P system is transformed into a type of extended

finite state machine called X-machine) and so the method guarantees total fault

detection under the assumptions of the W -method. Testing of a P system model

has been discussed in the past, but this paper makes the following significant

advances.

– It addresses the testing of spiking neural systems in a context different

from that utilised for cell-like P systems.

– It offers a solution to the state explosion problem by constructing a series

of approximations, using the concept of cover automaton. In order to

construct these approximations, Angluin’s learning from queries [6] and

the Ll algorithm for learning a finite cover automaton [23] are used. The

algorithm is adapted to the more general X-machine model.
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– It investigates the concept of identifiability in the context of spiking neu-

ral P systems, which is an essential prerequisite for the successful appli-

cation of our method. In general, identifiability of system’s components

(modules, methods, etc.) is a fundamental criterion used for assessing

a system’s testability since it allows the components of a system to be

identified from the behaviour produced in response to the inputs received;

identifiability is also an essential ingredient in a “design for test” strategy,

in which a system is designed so as to maximize the effectiveness of the

testing process [19].

For simplicity, in this paper the proposed method is presented for spiking

neural P systems without delays but the approach can be naturally extended to

spiking neural P systems with delay rules.

The paper is structured as follows. The main concepts and results to be

used in this paper are presented in sections 2 (spiking neural P systems, finite

automata, finite cover automata Mealy machines), 3 (the W -method for cover

automata) and 4 (the Ll algorithm for learning cover automata). The remain-

der of the paper presents the proposed method and its technical underpinnings:

X-machines and X-machine based testing are introduced in section 5, the ap-

plication of the forementioned testing and learning results to spiking neural P

systems is discussed in section 6, while section 7 investigates identifiability in

spiking neural P systems. The next section discusses practical details for the

application of our method. Finally, conclusions are drawn and future work is

outlined in section 9.

2. Preliminaries

In this section, we introduce the main theoretical concepts and models to

be used in this paper: spiking neural systems and finite state machines models,

namely finite automata, Mealy machines and cover automata.

In what follows, for a finite alphabet V = {a1, ..., ap}, V ∗ denotes the set

of all strings (sequences) over V ; the empty string is denoted by ε. The length
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(number of characters) of a string u is denoted by length(u); length(ε) = 0. V n

denotes the set of all strings of length n, n ≥ 0, with members in the alphabet

V and V [n] =
⋃

0≤i≤n V
i. The language described by a regular expression E is

denoted by L(E). For a finite set A, card(A) denotes the number of elements

of A.

2.1. Spiking neural P systems

We now introduce the spiking neural P system model. The definition related

concepts presented here are largely from [21] and [33].

Definition 1. A spiking neural P system (abbreviated SN P system) of degree

m, m ≥ 1, is a tuple Π = (O, σ1, . . . , σm, syn, in, out), where

• O = {a} is a singleton alphabet (a is called spike);

• σi, 1 ≤ i ≤ m, are neurons, σi = (ni, Ri), 1 ≤ i ≤ m, where

– ni ≥ 0 is the number of spikes in σi;

– Ri is a finite set of rules of the following forms:

∗ (Type (1); spiking rules)

E/ac → ap; where E is a regular expression over {a}, and c ≥ 1,

p ≥ 1, such that c ≥ p;

∗ (Type (2); forgetting rules)

as → ε, for s ≥ 1, such that for each rule E/ac → ap of type (1)

from Ri, a
s /∈ L(E);

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤

i, j ≤ m (synapses between distinct neurons);

• in, out ∈ {1, . . . .m} indicate the input and output neurons respectively.

An SN P system computes by applying one rule from each neuron at a time.

A rule of type (1) E/ac → ap can be applied if there are n spikes in neuron σj ,

n ≥ c and an ∈ L(E). In defining type (1) rules in SN P systems, we follow
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the standard convention of not specifying E whenever the left-hand side of the

rule is equal to E. Note that, in general, there may be a delay between the time

when a type (1) rule fires and the time the spike is emitted. However, in this

paper we consider only SN P systems without delay rules.

A rule of type (2) as → ε removes spike(s) from the neuron; this can only be

applied if the number of spikes in σj is exactly s, the number of spikes it needs

to be applied.

In general, it is possible to have an ∈ L(Ex) ∩L(Ey), for some rules of type

1, rx and ry, x 6= y, in neuron σj . In this case one of the two rules that can be

applied will be chosen. This is how the non-determinism of the SN P system is

realised. On the other hand, when a rule of type (2) is applicable, no other rule

is applicable in the same neuron. Since rules from several neurons can fire (or

spike) simultaneously, the system also exhibits parallelism.

A configuration of an SN P system Π is anm-tuple of integers C = (a1, a2, . . . , am),

where aj , 1 ≤ j ≤ m, represents the number of spikes in neuron σj . The vector

C(0) = (a
(0)
1 , a

(0)
2 , . . . , a

(0)
m ), where a

(0)
j , 1 ≤ j ≤ m, defines the initial number of

spikes in neuron σj , represents the initial configuration of Π. A configuration

for which no rule can be applied in any of the system’s compartments is called a

halting configuration. The sequence of configurations C(0)C(1) . . . C(n) starting

with the initial configuration is called a computation of the system.

An SN P system obtains inputs from the environment through the designated

input neuron, while the result produced can be observed through the designated

output neuron. One way in which the input is supplied to the system is in the

form of k natural numbers. More precisely, the SN P system reads from the

environment a binary sequence z = 10n1−10n2−11 . . . 10nk−1; the input neuron

receives a spike in each step corresponding to a 1 and no spike otherwise, until

all digits in the input sequence have been consumed [33]. Depending on the

purpose of the system, the output of the system can be represented in various

ways (see [21] and [33]). In this paper, however, we will not distinguish the

output neuron and, furthermore, we will consider that all system’s neurons can

be observed; this is consistent with the testing practice of observing the values
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all system’s variables in any of its state.

2.2. Finite automata

A finite state machine is a computing device composed of a finite number

of states and transitions between states labelled by symbols. In this paper,

two finite state machine variants will be used: finite automata and Mealy ma-

chines. In a finite automaton (FA) the transitions are labelled by mere inputs,

whereas the transitions of a Mealy machine are labelled by input-output pairs.

Essentially, finite automata are finite state acceptors while Mealy machines are

transducers.

Definition 2. A deterministic finite automaton (abbreviated DFA) is a tuple

A = (Σ, Q, q0, F, δ), where:

• Σ is the finite input alphabet;

• Q is the finite set of states;

• q0 ∈ Q is the initial state;

• F ⊆ Q is the set of final states;

• δ : Q× Σ −→ Q is the next-state function.

The next-state function δ can be extended to take sequences of inputs, i.e.,

δ : Q× Σ∗ −→ Q [15]. Given q ∈ Q, the set Lq(A) is defined by Lq(A) = {s ∈

Σ∗ | δ(q, s) ∈ F}. When q is the initial state of A, the set is called the language

accepted by A and the simpler notation L(A) is used.

A language that is accepted by some deterministic finite automaton is called

a regular language. Given a regular language L, a DFA that accepts L is called

minimal if any other DFA that accepts L has more states than A. A minimal

DFA that accepts a given regular language L is unique (up to a renaming of

the state set) [20]. Given a DFA A, a minimal DFA that accepts L(A) can be

constructed by removing the states that cannot be reached with appropriate

input sequences from the initial state and by “merging” all states that accept
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identical sets of inputs. More formally, a state q ∈ Q is called reachable if there

exists σ ∈ Σ∗ such that δ(q0, σ) = q. Given Y ⊆ Σ∗, two states q1, q2 ∈ Q

are called Y -equivalent if Lq1(A) ∩ Y = Lq2(A) ∩ Y . Otherwise q1 and q2 are

called Y -distinguishable. States q1 and q2 are called distinguishable if they are

Y -distinguishable for some Y ⊆ Σ∗. Then, a DFA A is minimal if and only if

(1) every state is reachable and (2) any two distinct states are distinguishable

[20].

2.3. Finite cover automata

In some practical applications, input sequences that exceed a certain length

are never used. In this case, the problem of constructing a (minimal) automaton

can be reformulated as follows: given a finite language U and l the length of the

longest sequence(s) in U , construct a (minimal) FA that accepts all sequences

in U and rejects all sequences in Σ[l]\U , but may accept or reject all remaining

sequences (the behaviour of the device for longer sequences is not relevant).

Such a device is called a finite cover automaton [8, 9].

Definition 3. Let A = (Σ, Q, q0, F, δ) be a FA, U ⊆ Σ∗ a finite language and

l the length of the longest sequence(s) in U . Then A is called a deterministic

finite cover automaton (DFCA) of U if L(A) ∩ Σ[l] = U .

A minimal DFCA for U is a DFCA for U having the least number of states.

A minimal DFCA for U may have much less states than the minimal DFA that

accepts U [22] and so, in applications in which the longer sequences are not

used, it is preferable to construct a minimal DFCA instead of the minimal DFA

that accepts U .

Similarly to the minimal DFA, a minimal DFCA is constructed by removing

the unreachable states and merging the states that exhibit “similar” behaviour.

Unlike in DFA minimisation though, the similarity relation on the state set used

in this case is not necessarily an equivalence relation and so the induced decom-

position on the state set is not necessarily an equivalence relation. Consequently,

there may exist more than one minimal deterministic finite cover automaton of
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the same finite language U . For further details, the reader is referred to [8] and

[28].

2.4. Mealy machines

Unlike finite automata, the transitions of Mealy machines are labelled by

input-output pairs.

Definition 4. A Mealy machine is a tuple

M = (Σ,Γ, Q, q0, δ, λ), where:

• Σ is the finite input alphabet;

• Γ is the finite output alphabet;

• Q is the finite set of states;

• q0 ∈ Q is the initial state;

• δ : Q× Σ −→ Q is the next-state function.

• λ : Q× Σ −→ Γ is the output function.

Naturally, the next-state and output functions can be extended to take se-

quences and produce the destination state and corresponding output function,

respectively, i.e., δ : Q×Σ∗ −→ Q and λ : Q×Σ∗ −→ Γ∗ [15]. The input-output

mapping from state q ∈ Q is denoted by λq, i.e., λq(s) = λ(q, s),∀s ∈ Σ∗.

The two finite state machine formalisms share many similarities. A deter-

ministic FA A can be naturally rewritten as a Mealy machine M . For instance,

two output symbols 0 and 1 can be introduced (Γ = {0, 1}); 0 will be associated

with transitions in A leading to a final state and 1 with transitions leading to

a non-final state. Then, for every input sequence s ∈ Σ∗ \ {ε}, s ∈ L if and

only if the last symbol of the corresponding output sequence λq0(s) is 0. On

the other hand, state distinguishability can also be defined in the context of

Mealy machines by examining the outputs produced, i.e., given Y ⊆ Σ∗, two

states q1, q2 ∈ Q are said to be Y -distinguishable if λq1(s) 6= λq2(s) for some

10



s ∈ Y . Similarly to finite automata, the minimality problem for Mealy ma-

chines is defined and addressed using state reachability and distinguishability

[15]. Furthermore, analogously to cover automata, an l-minimal Mealy machine

is defined for any l ≥ 1; this is a Mealy machine M having the least number of

states among all Mealy machines M ′ that produce identical output sequences

in response to any input sequence no longer than the upper bound l. Like in

the case of finite automata, the minimal Mealy machine (for a given machine)

is always unique [15], while many l-minimal Mealy machines may exist [22].

3. Bounded sequence testing from Mealy machines

Suppose our system is modelled by a Mealy machine and we would like to test

its unknown implementation. The W -method [10] assumes that it is possible to

estimate the maximum number of states of the implementation and generates a

test suite that, if applied to the implementation and all tests pass, will guarantee

that the implementation is functionally equivalent to the model. More precisely,

if Ck is the set of all Mealy machines with the same input and output alphabets

as M having no more than k more states than M , k ≥ 0, the W -method will

produce a finite set Xk of input sequences such that, for every M ′ ∈ Ck, M

and M ′ will produce identical output sequences on every sequence in Xk if and

only if M and M ′ are functionally equivalent (they produce identical output

sequences in response to any input sequence).

More recently, W -method has been adapted to generate test suites from finite

cover automata [22]. Here, given an upper bound l, the generated test suite Yk

will have the property that, for every M ′ ∈ Ck, M and M ′ will produce identical

output sequences on every sequence in Yk if and only if M and M ′ produce

identical output sequences in response to any sequence of up to l elements.

Naturally, Yk may be the set of all sequences in Σ[l], but usually, since l is fairly

large, this is impractical. The W -method, on the other hand, will produce test

suites of a much lower size. The technical details of the method, largely from

[22], are given below.
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Let M = (Σ,Γ, Q, q0, δ, λ) be a Mealy machine. Given a state q of M,

levelM (q) is defined to be the length of the shortest input sequence(s) that

reach q, i.e., if δ(q0, s) = q then length(s) ≥ levelM (q),∀s ∈ Σ∗. Let l ≥ 1 and

suppose M is l-minimal (this does not restrict the applicability of the method

since minimization algorithms, such as the algorithm provided in [27], can be

applied beforehand). Then a proper state cover and a characterisation set, as

defined next, exist.

Definition 5. S ⊆ Σ∗ is called a proper state cover of M if, for every state

q ∈ Q, there exists s ∈ S such that δ(q0, s) = q and length(s) = level(q).

Definition 6. W ⊆ Σ∗ is called a strong characterisation set of M , if for every

two states q1, q2 ∈ Q and every j ≥ 0, if q1 and q2 are Σ[j]-distinguishable then

q1 and q2 are (W ∩ Σ[j])-distinguishable.

Note that, in the above definition, it is sufficient for the implication to hold

when j is the length of the shortest sequence that distinguishes between q1 and

q2.

Then, as proved in [22], a test suite for M with respect to the fault model

consisting of all Mealy machines having no more than k extra states than M ,

k ≥ 0, can be constructed using the formula:

Yk = SΣ[k + 1](W ∪ {ε}) ∩ Σ[l] \ {ε}.

Therefore a test suite can be obtained from the concatenation of three sets: a

proper state cover S, the set Σ[k+1] of all input sequences of length up to k+1

and a a strong characterisation set W to which the empty sequence ε is added.

Naturally, only sequences of length less than or equal to l are extracted from

the resulting set and the empty sequences is also removed.

Theorem 1. Let l ≥ 1 and M = (Σ,Γ, Q, q0, δ, λ) be an l-minimal Mealy

machine. Let S and W be a proper state cover and a strong characterisa-

tion set of M , respectively. Then, for any k ≥ 0 and any Mealy machine

M ′ = (Σ,Γ, Q′, q′0, δ
′, λ′) such that card(Q′)− card(Q) ≤ k, the following holds:

λq0(s) = λ′q′0
(s),∀s ∈ Σ[l] if and only if λq0(t) = λ′q′0

(t),∀t ∈ Yk.
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As a finite automaton can be rewritten as a Mealy machine, the above result

will be used in the remainder of the paper to test deterministic (cover) automata

and their generalizations, X-machines.

4. Learning cover automata from queries

Learning finite automata from queries was introduced by Angluin in 1987 [6];

the paper also provides an algorithm, called L∗ for addressing this issue. The

setup is as follows: a learner seeks to construct a (minimal) deterministic finite

automaton for an unknown regular language L by repeatedly asking queries to

a teacher and an oracle. Two types of queries can be addressed. First, given an

input sequence s, the learner may ask if s ∈ L; this is called a membership query.

On the basis of the responses received, the L∗ produces a candidate automaton.

At this point, the learner may ask the oracle if this is the correct automaton, i.e.,

if it accepts the regular language L; this is called an equivalence query. If the

response is negative, the oracle will also provide a counterexample, that will be

used by the algorithm to start the construction of a new candidate automaton.

Using both membership and equivalence queries, the L∗ will construct a minimal

deterministic finite automaton A for the language L in polynomial number of

steps in the number of states of A. The algorithm has been adapted to construct

a minimal deterministic finite cover automaton of a finite language U [23]. The

resulting algorithm, called Ll is described next.

Similarly to L∗, the Ll algorithm uses two types of queries: membership

queries and language queries. Let l > 0 be length of the longest sequence in

U . The Ll algorithm constructs two sets: a non-empty, prefix-closed, set of

input sequences S ∈ Σ∗ and a non-empty, suffix-closed, set of input sequences

W ∈ Σ∗. S is used to reach the states and W to distinguish between the states

of the candidate automaton. S and W will be constructed such that S will only

contain sequences of up to l inputs, while W will only contain sequences of up

to l − 1 inputs.

The algorithm also keeps an observation table. The rows in the table are
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labelled by the elements of (S∪SΣ)∩Σ[l], while the columns are labelled by the

elements of W and each element in the table is formed from the concatenation

of the row label s ∈ (S∪SΣ)∩Σ[l] and column label w ∈W and is assigned one

of the values 0, 1 or −1. Thus, the observation table can be formally described

by a mapping T : ((S ∪ SΣ) ∩ Σ[l])W −→ {0, 1,−1}. For s ∈ (S ∪ SΣ) ∩ Σ[l]

and w ∈ W , the value of T (sw) is established through the membership query:

if sw ∈ U then T (sw) = 1; if u ∈ Σ[l] \ U then T (sw) = 0; if sw is longer

than l (sw /∈ Σ[l]), the response produced by the candidate automaton to be

constructed is not relevant, so T (sw) is given a third value, −1, i.e., T (sw) = −1.

In order to compare the rows in the observation table, a relation on these

rows, called similarity, is defined. Given, k, 1 ≤ k ≤ l, rows s and s′ are

said to be k-similar, written s ∼k s′ if, for every w ∈ W with length(w) ≤

k − max{length(s), length(s′)}, T (sw) = T (s′w). That is, all corresponding

values sw and sw′ in rows s and s′ coincide for every column w for which sw

and s′w have at most k elements. Otherwise, s and s′ are said to be k-dissimilar,

written s �k s
′. Using this similarity relation, two properties of an observation

table are defined: consistency and closedness. The observation table is said to

be consistent if, for every k, 1 ≤ k ≤ l, whenever rows s ∈ S and s′ ∈ S are

k-similar, rows sσ and s′σ are also k-similar for all σ ∈ Σ. The observation

table is said to be closed if, for any row s ∈ SΣ, there exists row s′ ∈ S with

length(s′) ≤ length(s), such that s ∼ s′.

Initially, S = W = {ε}. The Ll algorithm periodically checks the consistency

and closedness properties of the observation table. If the observation table is

not consistent then a suitable new column is added; similarly, a new row is

added when the table is found not to be closed. When both conditions are

met, a candidate DFA, denoted A(S,W, T ) is constructed from the consistent

and closed observation table. A language query is then addressed to the oracle;

if the candidate DFA is a cover automaton of A(S,W, T ) (i.e., the language

L accepted by A(S,W, T ) satisfies L ∩ Σ[l] = U) then the algorithm ends;

otherwise, the counterexample produced by the oracle is used by Ll to start a

new iteration and produce a new candidate DFA. The pseudocode description
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of the Ll algorithm between two language queries is given in Figure 1.

Given a consistent and closed observation table, the candidate DFAA(S,W, T )

is defined as follows. Given s ∈ S ∪SΣ, the minimum sequence t ∈ S according

to the quasi-lexicographical order on Σ∗ for which s ∼l t is denoted by r(s) (in

particular r(ε) = ε). Then A(S,W, T ) = (Σ, Q, q0, F, δ), where

• Q = {r(s) | s ∈ S};

• q0 = ε;

• F = {t | t ∈ Q,T (t) = 1};

• δ(t, σ) = r(tσ) (the consistency and closedness properties ensure that δ is

well-defined [23]).

Using both membership and language queries, the Ll algorithm will find a

minimal DFCA of U in polynomial time. For more details, we refer the reader

to [23].

5. Modelling and testing using X-machines

In this paper, the X-machine will be used as a vehicle for applying the pre-

viously presented modelling and testing techniques to spiking neural P systems:

an SN P system will be transformed into an X-machine using the learning al-

gorithm presented in section 4; then the testing technique described in section

3 will be used to generate tests from the X-machine model.

An X-machine is a type of extended finite state machine (extended automa-

ton) in which transitions between states are labelled by partial functions op-

erating on a data set X. The concept was originally introduced by Eilenberg

[15]. Subsequently, a variant, called stream X-machine, in which the data set is

composed of an input and an output stream of symbols and an internal memory

storage, was mostly used [19, 18]. In here, however, we use the general form of

the data set X. In order to use the X-machine as a modelling tool for spiking

neural P systems, we slightly modify its original definition in that the machine
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may use a set of initial data values instead of only one. Such a construct was

referred by Eilenberg as an X-module [15]; however, in this paper we keep the

more well-known name of X-machine.

We now introduce the X-machine model and preliminary results to be used

for the testing approach developed in the next section; essentially, we revisit the

results given in [17] to allow for the more general definition of an X-machine

used in this paper.

Definition 7. An X-Machine (abbreviated XM) is a tuple Z = (X,Φ, X0, Q, q0, δ),

where:

• X is the (possibly infinite) data set;

• Φ is a finite set of non-empty (partial) functions of type X −→ X; the

set Φ is called the type of Z, while each element of Φ called a processing

function of Z;

• X0 ⊆ X is the set of initial data values;

• Q is the finite set of states;

• q0 ∈ Q is the initial state;

• δ is the (partial) next-state function, δ : Q× Φ −→ Q.

An X-machine Z can be regarded as a finite automaton with the arcs labelled

by functions from the set Φ; in order to fit precisely Definition 2, the state space

can be extended with a non-final “sink” state, that collects all non-defined

transitions. The automaton AZ = (Φ, Q ∪ {sink}, q0, Q, δ) over the alphabet Φ

is called the associated deterministic finite automaton (abbreviated associated

DFA) of Z. Z is said to be completely defined if for every q ∈ Q and every x ∈ X,

there exists φ ∈ Φ such that x ∈ dom φ and (q, φ) ∈ dom δ. A specification

is usually completely defined but the results in this paper are not restricted by

this constraint.
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Definition 8. A computation of Z is a sequence x0 . . . xn, with x0 ∈ X0, xi ∈ X,

1 ≤ i ≤ n, for which there exist φ1, . . . , φn ∈ Φ such that φi(xi−1) = xi,

1 ≤ i ≤ n, and φ1 . . . φn ∈ L(AZ). The set of all computations of Z is denoted

by Comp(Z).

A sequence of processing functions that can be applied in an initial data

value is said to be controllable. Controllable sequences are essential in testing

as these are associated with the machine computations. An X-machine for which

all sequences in the language accepted by the associated DFA are controllable is

called itself controllable. As it will transpire in section 6, the X-machine models

of spiking neural P systems produced by the method presented in this paper

will be controllable and, therefore, suitable for testing purposes.

Definition 9. A sequence φ1 . . . φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, is said to

be controllable if there exist x0 ∈ X0, x1, . . . , xn ∈ X such that φi(xi−1) = xi,

1 ≤ i ≤ n. A set P ⊆ Φ∗ is called controllable if for every p ∈ P , p is controllable.

Z is said to be controllable if for every p ∈ L(AZ), p is controllable.

Consider now black-box test generation from an X-machine model. In black-

box testing, the implementation under test is unknown, but we may assume that

it can be modelled by some element from a known fault model. Naturally, when

the model is an X-machine Z, we can safely assume that the fault model is a

set of X-machines with the same data set X, type Φ and initial data values X0

as the specification. The underlying strategy for X-machine based testing is to

reduce checking that the implementation under test Z ′ conforms to the model

Z to checking that AZ′ conforms AZ and then to apply the W -method. As

the W -method, when applied to the associated DFA of the X-machine model,

will produce sequences of processing functions, a mechanism for translating

sequences of processing functions into sequences of actual data values (used in

testing) is needed. Such a mechanism is the test transformation defined next.

Definition 10. Given an X-machine Z = (X,Φ, x0, Q, q0, δ), a test transfor-

mation of Z is a function τ : Φ∗ −→ X∗ ∪ {⊥}, ⊥ /∈ X∗, such that, for every

φ1, . . . , φn ∈ Φ, n ≥ 0, and p = φ1 . . . φn, τ(p) meets the following requirements:
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• If p is controllable then

– If φ1 . . . φn ∈ L(AZ) then τ(φ1 . . . φn) = x0 . . . xn for some x0 ∈ X0,

x1, . . . , xn ∈ X such that φi(xi−1) = xi, 1 ≤ i ≤ n;

– Else τ(φ1 . . . φn) = x0 . . . xn0+1, for some x0 ∈ X0, x1, . . . , xn0 ∈

X such that φi(xi−1) = xi, 1 ≤ i ≤ n0, where n0 is such that

φ1 . . . φn0
∈ L(AZ) and φ1 . . . φn0+1 /∈ L(AZ);

• Else τ(p) = ⊥.

In other words, τ maps a controllable sequence of processing functions p =

φ1 . . . φn ∈ Φ that is a path in the associated automaton AZ onto a sequence of

data values x0 . . . xn that exercises that path. On the other hand, if p is not a

path of AZ , then the longest prefix p0 = φ1 . . . φn0
of p that is a path of AZ is

sought and τ(p) produces a sequence x0 . . . xn0+1 that attempts to exercise p0

plus one extra arc, φn0+1. Given a controllable sequence of processing functions

p, τ(p) will be used in testing to establish if the path p is accepted by the

associated automaton of the unknown model Z ′ of the implementation. On the

other hand, non-controllable paths are not useful in testing, so τ(p) = ⊥ for any

non-controllable sequence p.

As our testing strategy is to reduce checking that the implementation model

Z ′ conforms to Z to checking that AZ′ conforms to AZ , it must be possible to

identify the processing functions applied from the computations of Z and Z ′

examined in the testing process. Therefore, the concept of identifiable type,

defined below, is needed.

Definition 11. Φ is called identifiable if, for every φ1, φ2 ∈ Φ for which there

exists x ∈ X such that φ1(x) = φ2(x), then φ1 = φ2.

When Φ is identifiable, it is possible to establish if a controllable sequence of

processing functions is correctly implemented by examining the computations

of the specification Z and of the implementation Z ′. This result is given next.

Theorem 2. Let Z = (X,Φ, x0, Q, q0, δ) and Z ′ = (X,Φ, x0, Q
′, q′0, δ

′) be two

X-machines and τ a test transformation of Z. If Φ is identifiable then, for
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every φ1, . . . , φn ∈ Φ such that p = φ1 . . . φn is controllable, the following holds:

if τ(p) ∈ Comp(Z)⇔ τ(p) ∈ Comp(Z ′), then p ∈ L(AZ)⇔ p ∈ L(AZ′).

Proof. “=⇒”: Suppose p ∈ L(AZ). Since p is controllable, by Definition 10,

τ(φ1 . . . φn) = x0 . . . xn for some x0 ∈ X0, x1, . . . , xn ∈ X such that φi(xi−1) =

xi, 1 ≤ i ≤ n. Then x0 . . . xn is a computation of Z and so x0 . . . xn is a

computation of Z ′. Then there exist φ′1, . . . , φ
′
n ∈ Φ such that φ′1 . . . φ

′
n ∈ L(AZ′)

and φ′i(xi−1) = xi, 1 ≤ i ≤ n. As Φ is identifiable, using a simple induction, it

follows that φ′i = φi, 1 ≤ i ≤ n. Hence p ∈ L(AZ′).

“⇐=”: Suppose p /∈ L(AZ). Then, by Definition 10, τ(φ1 . . . φn) = x0 . . . xn0+1,

for some x0 ∈ X0, x1, . . . , xn0
∈ X such that φi(xi−1) = xi, 1 ≤ i ≤ n0, where n0

is such that φ1 . . . φn0
∈ L(AZ) and φ1 . . . φn0+1 /∈ L(AZ). We provide a proof

by contradiction that φ1 . . . φn0+1 /∈ L(AZ′). Assume φ1 . . . φn0+1 ∈ L(AZ′).

Then x1 . . . xn0+1 is a computation of Z ′ and so x1 . . . xn0+1 is a computation

of Z. Then there exist φ′1, . . . , φ
′
n0+1 ∈ Φ such that φ′1 . . . φ

′
n0+1 ∈ L(AZ) and

φ′i(xi−1) = xi, 1 ≤ i ≤ n0 + 1. Since Φ is identifiable, by induction it follows

that φ′i = φi, 1 ≤ i ≤ n0 + 1. Then φ1 . . . φn0+1 ∈ L(AZ). This provides a

contradiction, as required.

The above result can be used to generate a test set from an X-machine model

Z in which all paths of the associated automaton are controllable. When only

computations whose length does not exceed an upper bound l are of interest,

the W -method for bounded sequences (Theorem 1) is applied to produce se-

quences of processing functions from the associated automaton AZ , which are

then translated into actual data sequences using a test transformation. This is

the strategy used in the next section for generating test sequence for an SN P

system.

6. A testing approach for SN P systems

We can now use the previously presented results to devise our testing strat-

egy for SN P system models. Essentially, our approach involves two steps:
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• Rewriting the SN P system as an X-machine; more specifically, an approx-

imative X-machine model Zl of the system under test will be produced

using the Ll algorithm;

• Test suites are derived from Zl using the W -method for bounded sequences

(more precisely, its extension to the X-machines presented here).

First, let us examine how an SN P system can be rewritten as an X-machine.

Let Π = (O, σ1, . . . , σm, syn, in, out), σi = (ni, Ri), 1 ≤ i ≤ m, be an SN P

system. We consider that Π reads from the environment a binary sequence

of 0s and 1s (for convenience, in our running examples we also use a special

end marker, but this does not alter the validity of the theoretical results given

below). In each step, the first element is removed from the sequence until all

elements have been exhausted; if this is an 1, the input neuron will receive a

spike.

Then Π can be transformed into an X-machine Z = (X,Φ, x0, Q, q0, δ), where

• X = Nm × {0, 1}∗;

• Φ = {φ | φ = (ψ1, . . . , ψm) and ψi = ψri for some ri ∈ Ri or ψi = ei,

1 ≤ i ≤ m} with ei /∈ {ψri | ri ∈ Ri}, 1 ≤ i ≤ m;

• X0 = {(n1, . . . , nm)} × {0, 1}∗;

• Q = {q0, q1};

• δ(q0, φ) = q0, ∀φ ∈ Φ \ {(e1, . . . , em)}; δ(q, (e1, . . . , em)) = q1, ∀q ∈ Q.

A data value x ∈ X will be a tuple holding the configuration of Π and the

current binary sequence to be read. An initial data value x0 ∈ X0 will hold

the initial configuration and the binary sequence originally supplied to Π. The

type Φ consists of all processing functions φ = (ψ1, . . . , ψm), where ψi is either

of the form ψri , ri ∈ Ri, or is ei, 1 ≤ i ≤ m. The component function ψri

corresponds to the application of the rule ri ∈ Ri in neuron σi, 1 ≤ i ≤ m, on

the configuration of Π, while ei indicates that no rule is applicable in σi; also,
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the first element of the binary sequence is removed (passed on as a spike to the

input neuron), if this is not empty. While there is at least a neuron in which

a rule can be applied, the X-machine Z remains in state q0; otherwise (when

a halting configuration of Π is reached), Z enters state q1. Consequently, all

computations of Π are realized in state q0 of Z, the sole purpose of state q1

being to “collect” the non-defined transitions so that Z is completely defined.

Finally, note that, although the SN P system might have a final neuron, the

corresponding X machine does not consider it as being a special neuron. As

mentioned earlier, the values of the spikes in all neurons will be observed.

From the above definition of the X-machine Z associated with the SN P

system Π, one can observe that whenever in each computation step, whereby in

each neuron σi at most one rule ri is applied, with ri ∈ Ri, 1 ≤ i ≤ m, a unique

function φ = (ψ1, . . . , ψm), φ ∈ Φ is applied in Z. The component function

ψi, 1 ≤ i ≤ m, is either ψri , when ri is applied in σi, or is ei, otherwise.

Example 1. Let us consider the SN P system

Π1 = (O, σ1, σ2, σ3, σ4, σ5, σ6, syn, 1, 6),

where

• O = {a};

• σ1 = (0, {r1,1 : a→ a, r1,2 : a2 → a2}),

σ2 = (1, {r2 : a→ a}),

σ3 = (0, {r3,1 : a→ a, r3,2 : a2 → ε, r3,3 : a3 → ε}),

σ4 = (0, {r4,1 : a2 → a, r4,2 : a→ ε, r4,3 : a3 → ε}),

σ5 = (0, {r5 : a→ a}),

σ6 = (0, ∅);

• syn = {(1, 3), (1, 4), (2, 5), (5, 3), (5, 4), (3, 5), (4, 5), (4, 6)).

The diagram of the SN P system Π1 showing the neuron cells and synapses

is presented in Figure 2.
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Π1 reads from the environment a binary sequence such that, for every 1 a

spike will be brought into σ1, whereas a 0 will not bring anything. Furthermore,

the sequence ends with a marker, denoted by θ, which brings two spikes into

the input neuron. The initial configuration of Π1 is (0, 1, 0, 0, 0, 0). Π1 will start

by acting on the first element of the input sequence and by sending a spike

from σ2 to σ5. For each next step until the last element of the input sequence

is processed, a spike from σ5 will be sent to both σ3 and σ4 and if a spike is in

σ1 then this will be sent to σ3 and σ4 using r1,1, otherwise nothing will be sent

to them. In the case of a spike received by both σ3 and σ4, we end up with two

spikes in each of them and in σ3, r3,2 is used and the spikes are removed, whereas

in σ4, r4,1 will send a spike to both σ5 and σ6. When no spike is received by σ3

and σ4 (this means a 0 was read from the environment), we have only one spike

in each of the neurons σ3 and σ4. Then the rules r3,1 and r4,2 are applied. One

can notice that in each step, σ5 will receive a spike either from σ3 or σ4 and

whenever a 1 is read from the environment, a new spike is finally added to σ6,

and when a 0 is read, it will be eventually consumed by σ3. The whole process

stops when the end marker θ is received and two spikes are brought into σ1; in

this case, the rule r1,2 will send them to σ3 and σ4. Then, with the spike from

σ5, there will be three spikes in each of them and the rules r3,3 and r4,3 will

remove them and the process stops. When the input sequence is not empty,

i.e., it has a non empty sequence of 0 and 1, the neuron σ5 has one more spike

received in the previous step, either from σ3 or σ4. In the next step, this will

be sent to σ3, which will consume it through r3,1 and σ4, which will remove it,

by applying r4,2. Hence the final result, obtained in σ6, will remain unchanged.

Therefore Π1 counts the number of 1s in the input sequence.

Note that one can count 0s as well, simply by introducing a new neuron

connected only to σ3. In this case the rule r3,1 will also send a spike to the newly

created neuron whenever a single spike appears in σ3. So, this new neuron will

get the number of spikes that gives the number of 0s from the input sequence.

In this case, when the input is not empty the number of spikes coming from σ3

is the number of 0s from the input sequence plus 1.
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One can now built the X-machine Z1 according to the above-mentioned

procedure. The initial set of values is X0 = {(0, 1, 0, 0, 0, 0)} × {0, 1}∗ (i.e.,

initially, there will be a spike in σ2 and nothing in the rest). We now define the

functions of Φ as tuples.

The function that will be applied first to a value inX0 is φ1 = (e1, ψr2 , e3, e4, e5, e6).

This corresponds to the first step in Π1, whereby only r2 is applicable in

σ2, denoted by the function ψr2 The next functions applicable are φ2,i =

(ψ1, e2, e3, e4, ψr5 , e6), i = 1, 2, where ψ1 = e1, in φ2,1 when there is no spike in σ1

and ψ1 = ψr1,1 , in φ2,2 when a spike is in σ1. Then, if the input from the environ-

ment has more than one digit, then, in the next steps of the computation, one of

the following 4 functions is applicable: φ3,i = (ψ1, e2, ψ3, ψ4, ψr5 , e6), 1 ≤ i ≤ 4,

where ψ1 = e1, and ψ3 = ψr3,1 , ψ4 = ψr4,2 , in φ3,1 and ψ3 = ψr3,2 , φ4 = ψr4,1 , in

φ3,2. Similarly, for ψ1 = ψr1,1 , we define φ3,3 = (ψr1,1 , e2, ψr3,1 , ψr4,2 , ψr5 , e6) and

φ3,4 = (ψr1,1 , e2, ψr3,2 , ψr4,1 , ψr5 , e6). Finally, when the end of the input is de-

tected, the following functions are applicable: φ4,i = (ψr1,2 , e2, ψ3, ψ4, ψr5 , e6),

1 ≤ i ≤ 3, where ψ3 = e3, ψ4 = e4, when i = 1, ψ3 = ψr3,1 , ψ4 = ψr4,2 ,

when i = 2 and ψ3 = ψr3,2 , ψ4 = ψr4,1 , when i = 3. The last functions are

φ5,1 = (e1, e2, ψr3,3 , ψr4,3 , e5, e6) and φ5,2 = (e1, e2, ψr3,3 , ψr4,3 , ψr5 , e6). We do

not consider the final two steps mentioned for Π1, when the input is not empty.

An extra processing function φ6 = (e1, e2, e3, e4, e5, e6) will also be needed for

the case in which no rule is applicable in Π1.

Theorem 3. Let Π and Z as above and let c0, . . . , cn ∈ Nm, c0 = (n1, . . . , nm)

and b1, . . . , bk ∈ {0, 1}, k ≥ 1. Then c0 . . . cn is a computation of Π if and

only if x0 . . . xn is a computation of Z that keeps Z in state q0, where x0 =

(c0, b1 . . . bk), . . . , xk = (ck, ε), . . . , xn = (cn, ε), if k ≤ n and x0 = (c0, b1 . . . bk), . . . , xn =

(cn, bk−n . . . bk), otherwise.

Proof. Follows from the construction of Z.

However, the X-machine Z above defined cannot directly be used for test-

ing purposes since it is not controllable (for instance, in our running example
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sequences φ1φ3,i, 1 ≤ i ≤ 4, are not controllable since σ2 cannot send spikes to

σ3 or σ4 and, consequently, φ3,i cannot be applied after φ1).

Our approach is to construct a controllable X-machine model using a learning

algorithm. Furthermore, in order to keep state explosion under control, the Ll

learning algorithm is used to construct an approximation of the SN P system

that preserves all its computations that do not exceed a chosen upper bound.

Let Π be as above and let l > 0 be the chosen upper bound. The application

of the Ll algorithm for learning an approximative X-machine model Zl of an SN

P system Π is detailed in what follows. The data set X, the set of initial data

values X0 and the type Φ are defined as above; we assume that Φ is identifiable

(the implications of this assumption are discussed in more detail in the next

section). The Ll algorithm is then used to learn the associated automaton AZl

of Zl. However, since the labels Φ are processing functions, not mere symbols,

the value of the mapping T will be established by examining the data values

produced by the machine.

Consider a sequence of processing functions, p = φ1 . . . φn ∈ Φ∗. Naturally,

only sequences whose length does not exceed the upper bound will be of interest,

the others will be assigned the value −1. When n ≤ l, we will distinguish

between controllable and non-controllable paths; as, for testing purposes, our

model will need to contain only controllable paths, the noncontrollable sequences

of processing functions will be excluded by assigning them the value 0. Finally,

for controllable paths p, the value of T (p) will be established by examining the

data values produced along p. We can now assemble the above situations to

provide a definition for T .

Definition 12. Consider the setup for the learning algorithm described above.

Then T : Φ∗ −→ {−1, 0, 1} is defined as follows. For a controllable sequence

of processing functions p = φ1 . . . φn ∈ Φn, n ≥ 0, we denote by comp(p)

any sequence x0x1 . . . xn, x0 ∈ X0, x1, . . . , xn ∈ X such that φi(xi−1) = xi,

1 ≤ i ≤ n. Then, for every p = φ1 . . . φn, φ1, . . . , φn ∈ Φ, n ≥ 0, T (p) is defined

by:
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• If n ≤ l then

– If p is controllable then

∗ If comp(p) is a computation of Z then T (p) = 1;

∗ Else T (p) = 0;

– Else T (p) = 0;

• Else T (p) = −1.

Naturally, T is not necessarily uniquely defined as, for a controllable p,

there may exist many sequences x0x1 . . . xn as above. On the other hand, it will

transpire that the choice of the data values does not influence the outcome of

the learning algorithm.

We prove now that Zl reproduces the behaviour of Z when bounded com-

putations are considered.

Lemma 4. Let Z, l and Zl be as above. Suppose Φ is identifiable. Let Cl be

the set of all controllable sequences of processing functions in Φ[l] and Ul =

L(AZ) ∩ Cl. Then AZl
is a DFCA of Ul.

Proof. Let p = φ1 . . . φn ∈ Φ∗ be a controllable sequence of processing functions

and let x0 ∈ X0, x1, . . . , xn ∈ X as in Definition 12. Since Φ is identifiable, by

induction on i, 1 ≤ i ≤ n, it follows that p ∈ L(AZ) if and only if x0 . . . xn is

a computation of Z. Then T (p) = 1 if and only if p ∈ L(AZ). Thus, for any

sequence p = φ1 . . . φn ∈ Φ[l], T (p) = 1 if and only if p ∈ U . Therefore the Ll

algorithm will return a DFCA of Ul.

Theorem 5. Let Z, l and Zl be as above. Suppose Φ is identifiable. Then

Comp(Z) ∩X[l + 1] = Comp(Zl) ∩X[l + 1].

Proof. By Lemma 4, AZl
is a DFCA of Ul = L(AZ)∩Cl, with Cl being the set of

all controllable sequences of processing functions in Φ[l]. Then the result follows

since the non-controllable paths in Z do not produce extra computations.
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Furthermore, from construction, all paths of Zl whose length does not exceed

the upper bound l are controllable.

Theorem 6. Let p ∈ Φ[l]. If p ∈ L(AZl
) then p is controllable.

Proof. Follows from Definition 12.

Example 2. Consider again our running example (Π1 and Z1 in Example 1). It

can be observed that the set of processing functions Φ of Z1 is identifiable (more

precisely, Π1 is a deterministic SN P system according to Definition 13 given in

the next section; Theorem 8 shows that such systems produce X-machines for

which Φ is identifiable). Then, according to Lemma 4, for any upper bound l,

the learning algorithm presented above will produce a DFCA of Ul, the set of

controllable sequences of length up to l in L(AZ1
).

Let us examine the sequences of processing functions that can be triggered

from some initial data value. Recall that the end of the input string fed to Π1

(providing two spikes to σin) is denoted by θ. Then Table 1 shows the sequence

of processing functions triggered in Z1 by sequences of inputs of length up to 4

applied to Π1.

Table 2 shows the sequences of processing functions of length up to 4 that

can be triggered in Z1; these are the sequences of processing functions from

Table 1 and their prefixes of length up to 4.

Using the sequences in Table 2, one can construct a DFCA of Ul for l ≤ 4.

For the sake of simplicity, we only provide a DFCA of U3, as depicted in Figure

3 (in order to have the model completely defined, a loopback transition labelled

by φ6 has been added to q5).

As all paths of Zl of length at most l are controllable and Φ is identifiable, we

can now apply the W -method for bounded sequences and Theorem 2 to generate

test sets from Zl. The theoretical basis for our testing strategy is Theorem 7

below.

Let Zl = (X,Φ, x0, Q
′, q′0, δ

′). As discussed in section 2.4, the associated

automaton AZl
can be rewritten as a Mealy machine Ml. Let S be a proper
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Input sequence applied Functions triggered

no input φ6

θ φ1 φ4,1 φ5,1

0θ φ1 φ2,1 φ4,2 φ5,2

1θ φ1 φ2,2 φ4,3 φ5,2

00θ φ1 φ2,1 φ3,1 φ4,2 φ5,2

01θ φ1 φ2,1 φ3,3 φ4,3 φ5,2

10θ φ1 φ2,2, φ3,2 φ4,2 φ5,2

11θ φ1 φ2,2 φ3,4 φ4,3 φ5,2

000θ φ1φ2,1φ3,1φ3,1φ4,2φ5,2

001θ φ1 φ2,1 φ3,1 φ3,3 φ4,3 φ5,2

010θ φ1 φ2,1 φ3,3 φ3,2 φ4,2 φ5,2

011θ φ1 φ2,1 φ3,3 φ3,4 φ4,3 φ5,2

100θ φ1 φ2,2 φ3,2 φ3,1 φ4,2 φ5,2

101θ φ1 φ2,2 φ3,2 φ3,3 φ4,3 φ5,2

110θ φ1 φ2,2 φ3,4 φ3,2 φ4,2 φ5,2

111θ φ1 φ2,2 φ3,4 φ3,4 φ4,3 φ5,2

Table 1: Input sequences and sequences of functions triggered

state cover of Ml and W a strong characterisation set of Ml, respectively, and

let τ be the test transformation of Zl. Then, given k ≥ 0, the set we are after

is Tk = τ(Yk), where

Yk = SΦ[k + 1](W ∪ {ε}) ∩ Φ[l] \ {ε}.

Example 3. Consider again our running example and let l = 3 and Z3 the

X-machine whose state transition diagram is as represented in Figure 3. States

q0, q1, q2, q3, q4 and q5 are reached by s0 = ε, s1 = φ1, s2 = φ1 φ4,1, s3 = φ1 φ2,1,

s4 = φ1 φ2,2 and s5 = φ6, respectively, and these are the sequences of minimum

length having this property. Therefore S = {s0, s1, s2, s3, s4, s5} is a proper

state cover of the Mealy machine associated with AZ3 . On the other hand, it
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Length Sequences triggered

1 φ6

φ1

2 φ1 φ4,1

φ1 φ2,1

φ1 φ2,2

3 φ1 φ4,1 φ5,1

φ1 φ2,1 φ4,2

φ1 φ2,1 φ3,1

φ1 φ2,1 φ3,3

φ1 φ2,2 φ4,3

φ1 φ2,2 φ3,2

φ1 φ2,2 φ3,4

4 φ1 φ2,1 φ4,2 φ5,2

φ1 φ2,1 φ3,1 φ4,2

φ1 φ2,1 φ3,1 φ3,1

φ1 φ2,1 φ3,1 φ3,3

φ1 φ2,1 φ3,3 φ4,3

φ1 φ2,1 φ3,3 φ3,2

φ1 φ2,1 φ3,3 φ3,4

φ1 φ2,2 φ4,3 φ5,2

φ1 φ2,2 φ3,2 φ4,2

φ1 φ2,2 φ3,2 φ3,1

φ1 φ2,2 φ3,2 φ3,3

φ1 φ2,2 φ3,4 φ4,3

φ1 φ2,2 φ3,4 φ3,2

φ1 φ2,2 φ3,4 φ3,4

Table 2: Sequences of functions triggered of length up to 4
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can be observed that all pairs of states of AZ3 can be distinguished by singletons;

e.g., w0 = φ1 distinguishes q0 from any other state, w1 = φ4,1 distinguishes q1

from any other state, w2 = φ5,1 distinguishes q2 from any other state, w3 = φ4,2

distinguishes q3 from any other state, w4 = φ4,3 distinguishes q4 from any other

state. Therefore W = {w0, w1, w2, w3, w4} is a strong characterization set of

the Mealy machine associated with AZ3
.

The theorem below shows that, for sequences of length at most l, the test

suite constructed above will detect all faults of an implementation whose model

is in the fault model consisting of all X-machines whose number of states does

not exceed the number of states of Z by more than k.

Theorem 7. Let Zl, k and Tk be as above. Suppose Φ is identifiable. Then, for

any X-machine Z ′′ = (X,Φ, x0, Q
′′, q′′0 , δ

′′) such that card(Q′′)− card(Q′) ≤ k,

Comp(Zl) ∩ X[l + 1] = Comp(Z ′′) ∩ X[l + 1] if and only if Comp(Zl) ∩ Tk =

Comp(Z ′′) ∩ Tk.

Proof. “=⇒”: Since Comp(Zl)∩X[l+1] = Comp(Z ′′)∩X[l+1], it follows that

Comp(Zl)∩X[l+ 1]∩Tk = Comp(Z ′′)∩X[l+ 1]∩Tk. Since X[l+ 1]∩Tk = Tk,

the required result follows.

“⇐=”: Suppose Comp(Zl) ∩ Tk = Comp(Z ′′) ∩ Tk.

Let p ∈ Yk be a controllable sequence of processing functions. Then τ(p) ∈

Tk. Since Comp(Zl) ∩ Tk = Comp(Z ′′) ∩ Tk, τ(p) ∈ Comp(Z) if and only if

τ(p) ∈ Comp(Z ′′). Then, by Theorem 2, p ∈ L(AZ) if and only if p ∈ L(AZ′′).

Since p ∈ Yk is arbitrarily chosen, it follows that, for every controllable sequence

of processing functions p ∈ Φ∗, p ∈ L(AZl
) ∩ Yk if and only if p ∈ L(AZ′′) ∩ Yk.

Then, by Theorem 1, for every controllable p ∈ Φ∗, p ∈ L(AZl
)∩Φ[l] if and only

if p ∈ L(AZ′′) ∩ Φ[l]. Thus, Comp(Zl) ∩X[l + 1] = Comp(Z ′′) ∩X[l + 1].

7. Identifiable SNPS

As shown by Theorem 7, the complete fault-detection of our testing strategy

is guaranteed if the type Φ of Z is identifiable. In this section we investigate this
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property and identify particular cases of SN P systems for which the resulting

X-machine Z satisfies this condition.

First, it can be observed that this condition is satisfied whenever the SN P

system in question exhibits deterministic behaviour.

Definition 13. An SN P system Π = (O, σ1, . . . , σm, syn, in, out) of degree m is

said to be deterministic if, for every i, 1 ≤ i ≤ m, and every two distinct spiking

rules rx, ry ∈ Ri of neuron σi of the form Ex/a
cx → apx and Ey/a

cy → apy ,

respectively, L(Ex) ∩ L(Ey) = ∅.

It can be observed that the SN P system in Example 1 is deterministic.

Theorem 8. Let Π = (O, σ1, . . . , σm, syn, in, out) be an SN P system of degree

m and Z = (X,Φ, x0, Q, q0, δ) the resulting X-machine. If Π is deterministic

then Φ is identifiable.

Proof. Let φ, φ′ ∈ Φ be two processing functions of Z, φ = (ψ1, . . . , ψm), φ′ =

(ψ′1, . . . , ψ
′
m). Suppose there exists x ∈ X such that x ∈ dom φ ∩ dom φ′. Let

x = (c, b), where c is the current configuration of Π and b the binary sequence

supplied to Π. Then, for every i, 1 ≤ i ≤ m, ψi and ψ′i are applicable in c. Since

Π is deterministic, ψi = ψ′i, 1 ≤ i ≤ m. Thus φ = φ′.

A more general case in which the resulting Φ is identifiable is given by the

following definition.

Definition 14. An SN P system Π = (O, σ1, . . . , σm, syn, in, out) of degree m

is said to be observable if for every i, 1 ≤ i ≤ m, at least one of the following

conditions are met:

1 for every two distinct spiking rules rx, ry ∈ Ri of neuron σi of the form

Ex/a
cx → apx and Ey/a

cy → apy , respectively, L(Ex) ∩ L(Ey) = ∅;

2 (j, i) /∈ syn, for all j, 1 ≤ j ≤ m, and for every two distinct spiking rules

rx, ry ∈ Ri in neuron σi of the form Ex/a
cx → apx and Ey/a

cy → apy , if

L(Ex) ∩ L(Ey) 6= ∅ then cx 6= cy.
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In other words, every neuron of Π either (1) exhibits deterministic behaviour

or (2) it cannot receive spikes from other neurons and any of its two spiking

rules that overlap remove different number of spikes.

Example 4. Let us consider the following SN P system

Π2 = (O, σ1, σ2, syn, 1, 2),

where

• O = {a};

• σ1 = (0, {r1,1 : aa/a→ a, r1,2 : aa/a2 → a, r1,3 : a3 → ε, r1,4 : a4 → ε, }),

σ2 = (0, ∅);

• syn = {(1, 2)}.

The SN P system Π2 reads from the environment a binary sequence such that,

for every 1, a spike will be brought into σ1, whereas a 0 will not bring anything.

The sequence ends with an entity coding for three spikes that will be brought

into the input neuron. Whenever two spikes are accumulated in σ1 either r1,1

or r1,2 will be used in a non-deterministic manner. The system stops when the

final marker is read, by using one of the rules r1,3, r1,4. It can be observed that

Π2 is observable but not deterministic.

Theorem 9. Let Π = (O, σ1, . . . , σm, syn, in, out) be a SN P system of degree

m and Z = (X,Φ, x0, Q, q0, δ) the resulting X-machine. If Π is observable, then

Φ is identifiable.

Proof. Let φ, φ′ ∈ Φ be two processing functions of Z, φ = (ψ1, . . . , ψm), φ′ =

(ψ′1, . . . , ψ
′
m). Suppose there exists x ∈ X such that x ∈ dom φ ∩ dom φ′ and

φ(x) = φ′(x). Let x = (c, b), where c is the current configuration of Π and b

the binary sequence supplied to Π. Then, for every i, 1 ≤ i ≤ m, ψi and ψ′i

are applicable in c. Consider one such i, 1 ≤ i ≤ m. If the first condition of

Definition 14 is met in neuron i then ψi = ψ′i. Otherwise, the second condition

must be met. If we assume that ψi 6= ψ′i then the number of spikes in neuron
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σi after the application of ψi will differ from the number of spikes in neuron σi

after the application of ψ′i. Consequently ψi(x) 6= ψ′i(x), which contradicts the

assumption that φ(x) = φ′(x). Thus ψi = ψ′i. Hence φ = φ′.

8. Discussion

Naturally, the successful application of our method will depend on the ability

to construct an X-machine approximation suitable for our purposes and the

choice for upper bound l is a key aspect in this respect. Obviously, larger l will

produce approximations increasingly close to the actual model, but this may

result in very complex, often unmanageable models and, on the other hand,

very long sequences are not the norm in testing. One possible solution to this

problem is the use of coverage criteria for assessing the approximations obtained.

Code coverage is a very widespread means of assessing the effectiveness of test

suites in white box testing: here the suites are selected so that they cover

some selected elements of the program under test. Most usually, these are the

program statements (or the nodes in the graph associated with the program)

or the branches between nodes [40]. These ideas can be translated to model-

based testing, yielding the concepts of state coverage and transition coverage,

respectively [4, 40]. An even more powerful coverage criterion is based on the

pairs of transition symbols covered by a test suite; the percentage of the pairs

of symbols covered by the test suite, also called switch cover, transition-pair or

two-trip is considered a powerful test coverage criterion and is included in the

British Computer Society standard for software component testing [4]. Using

this criterion, we can consider that a DFCA approximation is suitable for testing

purposes when, by gradually increasing the upper bound l, this metric stabilizes;

previous investigations suggests that this happens for reasonably low values of

l [26].

Note also that, when passing from the application of the Ll algorithm for

a value of l to the application of the algorithm for the next value, l + 1, the

DFCA learning procedure does not start anew and the values of S and W from
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the previous iteration can be used as starting values for the next iteration of the

learning algorithm, with obvious time savings. Also note that the sets S and

W produced by Ll are a proper state cover and a strong characterization set,

respectively, of the resulting DFCA, and so they can be used in the construction

of the test suite after a minimization process (typically S and W contain extra

sequences and these will be removed in order to obtain smaller test suites).

9. Conclusions

This paper proposes a testing approach for SN P systems that, under well-

defined conditions, ensures that the implementation conforms to the specifica-

tion and also provides a solution to the state explosion problem through the

construction of model approximations. The proposed approach consists of three

main steps:

• Rewrite the SN P system in terms of X-machines;

• Construct an approximative X-machine model Zl of the system using the

Ll algorithm for learning DFCA;

• Derive test suites from Zl using the W -method for bounded sequences

(the variant of the method for X-machines).

The paper also investigates the concept of identifiable SN P systems, which is

essential for testing these systems. Naturally, a tool for supporting the proposed

testing method needs to be provided. This will be the subject of a future paper.

Case studies can then be performed to assess the effectiveness of the method

and of the strategies for selecting the upper bound proposed in Section 8.

Naturally, one possible future line of research is to seek to extend the current

strategy to other classes of P systems (e.g., cell-like P systems). The main

problem in this direction could be the maximally parallel mode in which the

rules may be applied and, consequently, the construction of the associated X-

machine may require some limitations to be imposed on the number of rules

applied in each cell in one computation step. Another relevant future research
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topic is the development of a direct way of building the DFCA approximations

from SN P systems (as well as other P system variants), without the translation

of these models into equivalent X-machines.
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——————————————————————————-

DFCA learning procedure

——————————————————————————-

Input: S, W and the current observation table T .

Repeat

\— Check consistency —\

For every w ∈W , in increasing order of length(w) = i do

Search for s1, s2 ∈ S with length(s1), length(s2) ≤ l − i− 1

and σ ∈ Σ such that s1 ∼k s2, where

k = max{length(s1), length(s2)}+ i+ 1, and T (s1σw) 6= T (s2σw).

If found then

Add σw to W .

Extend T to (S ∪ SΣ)W using membership queries.

\— Check closedness —\

Set new row added = false.

Repeat for every s ∈ S, in increasing order of length(s)

Search σ ∈ Σ such that sσ 6∼ t ∀t ∈ S with length(t) ≤ length(sσ).

If found then

Add sσ to S.

Extend T to (S ∪ SΣ)W using membership queries.

Set new row added = true.

Until new row added or all elements of S were processed

Until ¬new row added

Construct A(S,W, T ).

Return A(S,W, T ).

——————————————————————————-

Figure 1: The learning procedure of Ll
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Figure 2: SN P system Π1 diagram
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Figure 3: State transition diagram of a DFCA of U3
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