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Abstract

This paper proposes a testing approach for spiking neural P systems, signifi-
cantly different from the past testing research for cell-like P systems. The pro-
posed method provides a solution to the state explosion problem by constructing
a series of approximations, using the concept of cover automaton and Angluin-
style model learning from queries, more precisely the L' algorithm for learning
a finite cover automaton, adapted to the more general X-machine model. Fur-
thermore, the concept of idenfiability, which is an essential prerequisite for the
successful application of our method, but also a more general design charac-
teristic inspired from the testing practice, is introduced and investigated in the
context of spiking neural P systems. Identifiability of system’s components
(modules, methods, etc.) is a fundamental criterion used for assessing a sys-
tem’s testability since it allows the components of a system to be identified from
the behaviour produced in response to the inputs received and, consequently,
maximizes the effectiveness of the testing process.
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1. Introduction

Membrane computing is a branch of natural computing inspired by the struc-
ture and functioning of the living cells. This computation paradigm was intro-
duced in [34] and the models have been called membrane systems or P systems.
Due to a rapid and sustained development, an initial research monograph [35]
and, later on, a comprehensive handbook, covering both theoretical results and
applications [36], were published. A specific model of membrane computing,
called spiking neural P system, is inspired by the neuron cells. The model was
introduced in [21] and has been intensively investigated. A survey paper [38]
presents the key theoretical developments in this area and the main applications
of the model. Some of the most relevant applications of spiking neural P sys-
tems are in modelling arithmetic operations [30, 43, 29, 41, 45], error-tolerant
serial binary full-adder [31], skeletonizing images [14], solving combinatorial op-
timizations [44]. Fuzzy neural P systems are applied in solving fault diagnosis
problems [39, 42]. A special line of research in membrane systems (many of them
with respect to neural P systems) is dedicated to the formal analysis of these
systems. This includes formal semantics [5, 7, 12, 13], reversible computation
[1, 37, 3], causality [2, 32] and memory associated with these systems [11]. Test-
ing, especially model-based approach using membrane systems, is another type
of formal analysis of these systems looking at traces of execution (computation
pathways) defined with respect to certain formal principles. This approach is
also significant for validating applications of membrane systems. Testing is the
process of running a software system or program with the purpose of discovering
bugs. Testing is the main validation technique used in the industry. Even when
the model of the system has been formally verified, as it is the case with safety
critical applications, the system is still tested; this is because the behaviour of
the actual system implementation may differ from the verified model. Since
even for trivial programs exhaustive testing (i.e., running the program on all
its possible inputs) is impossible or at least impractical, test selection (or test

generation) is a major part of testing and various techniques exist. Essentially,



these seek to “cover” as much as possible of the program specification and/or
implementation so as to maximise the likelihood of fault detection when these
tests are run.

A major class of test generation techniques are grouped under the name of
black-box testing. In black-box testing (also called functional testing), tests
are derived from the requirements (or specification) and the implementation (or
system) under test is regarded as a black-box: tests are applied, and results
can be observed but nothing is known about the structure of implementation
(which is a black-box). In many cases in the software industry requirements are
expressed informally and so the test generation techniques are also informal. On
the other hand, when a formal model exists, test data may be selected in a more
rigorous way so that a certain level of coverage or fault detection is achieved.
Also, the existence of a model allows test generation to be automated, which is a
big plus when it comes to the practical applicability of such techniques. Black-
box testing in the presence of a formal model is called model-based testing.
Usually, state-based models, composed of states and transitions between states,
are used. The most important limitation of model-based testing is related to
the size of the model produced: as the number of state variables increases, the
number of states grows exponentially. This is called the state explosion problem.
Hence, a major challenge of model-based testing is devising techniques to reduce
or alleviate this problem.

The major limitation of (black box) testing, seen from the perspective of the
formal methods community, is that “program testing can be used to show the
presence of bugs, but never to show their absence!” (Edsger W. Dijkstra). This
is obviously true when tests are derived from an informal specification, but also,
to some extent in model-based testing since most test generation techniques are
aimed at achieving a certain coverage level of the model, which is not directly
linked with the absence of the errors. On the other hand, there are model-based
testing techniques that guarantee complete fault-detection, albeit under certain
(more or less restrictive) assumptions. Suppose M is the model of the system

and I the implementation under test. Naturally, in black-box testing I is not



known, but one can define a fault model, a set C' of models such that, if the
model of the implementation under test I belongs to C' and I passes all tests,
is guaranteed to be fault-free (its model is functionally equivalent to M). One
well-known example of such techniques is the W-method [10]. Here, the model
is a finite state machine (more precisely, the Mealy machine variant) and the
fault model is, for a given k > 0, the set of all Mealy machines whose number
of states does not exceed the number of states n of M by more than k. The
downside is that the size of the test suite generated by the method is exponential
in k. However, when the implementation is relatively close to the model, k is
normally relatively low, and so the total size of the test suite is a polynomial of
low degree (in the size of the input alphabet and the size of the state set).

Model based testing approaches have been introduced and studied for cell-
like P systems [16, 24, 17]. Also, mutation testing for the same class of P systems
has been considered [25]. However, although important applications of spiking
neural P systems exist, to the best of our knowledge, testing of these models
has not been approached yet.

This paper proposes a testing method for spiking neural P systems. The
underlying test generation strategy is based on a generalization of the W-method
(for this, the spiking neural P system is transformed into a type of extended
finite state machine called X-machine) and so the method guarantees total fault
detection under the assumptions of the W-method. Testing of a P system model
has been discussed in the past, but this paper makes the following significant

advances.

— It addresses the testing of spiking neural systems in a context different

from that utilised for cell-like P systems.

— It offers a solution to the state explosion problem by constructing a series
of approximations, using the concept of cover automaton. In order to
construct these approximations, Angluin’s learning from queries [6] and
the L! algorithm for learning a finite cover automaton [23] are used. The

algorithm is adapted to the more general X-machine model.



— It investigates the concept of identifiability in the context of spiking neu-
ral P systems, which is an essential prerequisite for the successful appli-
cation of our method. In general, identifiability of system’s components
(modules, methods, etc.) is a fundamental criterion used for assessing
a system’s testability since it allows the components of a system to be
identified from the behaviour produced in response to the inputs received;
identifiability is also an essential ingredient in a “design for test” strategy,
in which a system is designed so as to maximize the effectiveness of the

testing process [19].

For simplicity, in this paper the proposed method is presented for spiking
neural P systems without delays but the approach can be naturally extended to
spiking neural P systems with delay rules.

The paper is structured as follows. The main concepts and results to be
used in this paper are presented in sections 2 (spiking neural P systems, finite
automata, finite cover automata Mealy machines), 3 (the W-method for cover
automata) and 4 (the L! algorithm for learning cover automata). The remain-
der of the paper presents the proposed method and its technical underpinnings:
X-machines and X-machine based testing are introduced in section 5, the ap-
plication of the forementioned testing and learning results to spiking neural P
systems is discussed in section 6, while section 7 investigates identifiability in
spiking neural P systems. The next section discusses practical details for the
application of our method. Finally, conclusions are drawn and future work is

outlined in section 9.

2. Preliminaries

In this section, we introduce the main theoretical concepts and models to
be used in this paper: spiking neural systems and finite state machines models,
namely finite automata, Mealy machines and cover automata.

In what follows, for a finite alphabet V' = {a1,...,a,}, V* denotes the set

of all strings (sequences) over V; the empty string is denoted by e. The length



(number of characters) of a string u is denoted by length(u); length(e) = 0. V"
denotes the set of all strings of length n, n > 0, with members in the alphabet
Voand Vin| = Up<i<n V. The language described by a regular expression E is
denoted by L(E). For a finite set A, card(A) denotes the number of elements
of A.

2.1. Spiking neural P systems

We now introduce the spiking neural P system model. The definition related

concepts presented here are largely from [21] and [33].

Definition 1. A spiking neural P system (abbreviated SN P system) of degree

m, m > 1,is a tuple Il = (O, 01,...,0m, syn, in, out), where
e O = {a} is a singleton alphabet (a is called spike);
e 0;,1 <i <m, are neurons, o; = (n;, R;),1 < i < m, where

— n; > 0 is the number of spikes in o;;
— R; is a finite set of rules of the following forms:
x (Type (1); spiking rules)
E/a® — a?; where E is a regular expression over {a}, and ¢ > 1,
p > 1, such that ¢ > p;
x (Type (2); forgetting rules)
a® — ¢, for s > 1, such that for each rule E/a® — a? of type (1)
from R;, a® ¢ L(E);

e syn C {1,2,...,m} x {1,2,...,m} with ¢ # j for all (¢,5) € syn, 1 <
i,7 < m (synapses between distinct neurons);

e in,out € {1,....m} indicate the input and output neurons respectively.

An SN P system computes by applying one rule from each neuron at a time.
A rule of type (1) E/a® — aP can be applied if there are n spikes in neuron o,

n > ¢ and a™ € L(FE). In defining type (1) rules in SN P systems, we follow



the standard convention of not specifying F whenever the left-hand side of the
rule is equal to F. Note that, in general, there may be a delay between the time
when a type (1) rule fires and the time the spike is emitted. However, in this
paper we consider only SN P systems without delay rules.

A rule of type (2) a® — e removes spike(s) from the neuron; this can only be
applied if the number of spikes in o; is exactly s, the number of spikes it needs
to be applied.

In general, it is possible to have a”" € L(E,) N L(E,), for some rules of type
1, rz and 7y, © # y, in neuron ;. In this case one of the two rules that can be
applied will be chosen. This is how the non-determinism of the SN P system is
realised. On the other hand, when a rule of type (2) is applicable, no other rule
is applicable in the same neuron. Since rules from several neurons can fire (or
spike) simultaneously, the system also exhibits parallelism.

A configuration of an SN P system II is an m-tuple of integers C = (a1, ag, ..., am),
where a;, 1 < j < m, represents the number of spikes in neuron ;. The vector
c = (a§°), aéo), ... ,a&?)), where a;o), 1 < j < m, defines the initial number of
spikes in neuron o, represents the nitial configuration of II. A configuration
for which no rule can be applied in any of the system’s compartments is called a
halting configuration. The sequence of configurations C(QC™) . O™ starting
with the initial configuration is called a computation of the system.

An SN P system obtains inputs from the environment through the designated
input neuron, while the result produced can be observed through the designated
output neuron. One way in which the input is supplied to the system is in the
form of k natural numbers. More precisely, the SN P system reads from the
environment a binary sequence z = 10" ~'0"2~11... 10" ~!; the input neuron
receives a spike in each step corresponding to a 1 and no spike otherwise, until
all digits in the input sequence have been consumed [33]. Depending on the
purpose of the system, the output of the system can be represented in various
ways (see [21] and [33]). In this paper, however, we will not distinguish the
output neuron and, furthermore, we will consider that all system’s neurons can

be observed; this is consistent with the testing practice of observing the values



all system’s variables in any of its state.

2.2. Finite automata

A finite state machine is a computing device composed of a finite number
of states and transitions between states labelled by symbols. In this paper,
two finite state machine variants will be used: finite automata and Mealy ma-
chines. In a finite automaton (FA) the transitions are labelled by mere inputs,
whereas the transitions of a Mealy machine are labelled by input-output pairs.
Essentially, finite automata are finite state acceptors while Mealy machines are

transducers.

Definition 2. A deterministic finite automaton (abbreviated DFA) is a tuple
A=(%,Q,q,F,0), where:

e Y is the finite input alphabet,

Q@ is the finite set of states;

qo € Q is the initial state;

F C Q is the set of final states;

0:Q x X — Q is the next-state function.

The next-state function ¢ can be extended to take sequences of inputs, i.e.,
§:Q xX* — Q [15]. Given g € Q, the set LI(A) is defined by L1(A) = {s €
¥* | d(q,s) € F}. When ¢ is the initial state of A, the set is called the language
accepted by A and the simpler notation L(A) is used.

A language that is accepted by some deterministic finite automaton is called
a regular language. Given a regular language L, a DFA that accepts L is called
mianimal if any other DFA that accepts L has more states than A. A minimal
DFA that accepts a given regular language L is unique (up to a renaming of
the state set) [20]. Given a DFA A, a minimal DFA that accepts L(A) can be
constructed by removing the states that cannot be reached with appropriate

input sequences from the initial state and by “merging” all states that accept



identical sets of inputs. More formally, a state ¢ € @ is called reachable if there
exists o € X* such that §(go,0) = ¢. Given Y C X*, two states q1,q2 € Q
are called Y-equivalent it L7 (A)NY = L2(A)NY. Otherwise ¢; and ¢ are
called Y -distinguishable. States q; and g2 are called distinguishable if they are
Y-distinguishable for some Y C ¥*. Then, a DFA A is minimal if and only if
(1) every state is reachable and (2) any two distinct states are distinguishable

[20].

2.8. Finite cover automata

In some practical applications, input sequences that exceed a certain length
are never used. In this case, the problem of constructing a (minimal) automaton
can be reformulated as follows: given a finite language U and [ the length of the
longest sequence(s) in U, construct a (minimal) FA that accepts all sequences
in U and rejects all sequences in X[I]\ U, but may accept or reject all remaining
sequences (the behaviour of the device for longer sequences is not relevant).

Such a device is called a finite cover automaton [8, 9].

Definition 3. Let A = (X,Q, qo, F, ) be a FA; U C ¥* a finite language and
[ the length of the longest sequence(s) in U. Then A is called a deterministic
finite cover automaton (DFCA) of U if L(A)NX[l] =U.

A minimal DFCA for U is a DFCA for U having the least number of states.
A minimal DFCA for U may have much less states than the minimal DFA that
accepts U [22] and so, in applications in which the longer sequences are not
used, it is preferable to construct a minimal DFCA instead of the minimal DFA
that accepts U.

Similarly to the minimal DFA, a minimal DFCA is constructed by removing
the unreachable states and merging the states that exhibit “similar” behaviour.
Unlike in DFA minimisation though, the similarity relation on the state set used
in this case is not necessarily an equivalence relation and so the induced decom-
position on the state set is not necessarily an equivalence relation. Consequently,

there may exist more than one minimal deterministic finite cover automaton of



the same finite language U. For further details, the reader is referred to [8] and

[28].

2.4. Mealy machines
Unlike finite automata, the transitions of Mealy machines are labelled by

input-output pairs.

Definition 4. A Mealy machine is a tuple
M = (%,T,Q,q,9, ), where:

Y. is the finite input alphabet,

T is the finite output alphabet;

Q@ is the finite set of states;

qo € Q is the initial state;

0:Q@Q x X — Q is the next-state function.

A Q x X —> T is the output function.

Naturally, the next-state and output functions can be extended to take se-
quences and produce the destination state and corresponding output function,
respectively, i.e., § : @ xX* — Q and X : @ x X* — T'* [15]. The input-output
mapping from state ¢ € @ is denoted by Ag, i.e., A\(s) = A(g, s),Vs € *.

The two finite state machine formalisms share many similarities. A deter-
ministic FA' A can be naturally rewritten as a Mealy machine M. For instance,
two output symbols 0 and 1 can be introduced (I" = {0, 1}); 0 will be associated
with transitions in A leading to a final state and 1 with transitions leading to
a non-final state. Then, for every input sequence s € £* \ {¢}, s € L if and
only if the last symbol of the corresponding output sequence Ay, (s) is 0. On
the other hand, state distinguishability can also be defined in the context of
Mealy machines by examining the outputs produced, i.e., given ¥ C X*, two

states ¢q1,¢q2 € Q are said to be Y -distinguishable if Ay, (s) # Ag,(s) for some

10



s € Y. Similarly to finite automata, the minimality problem for Mealy ma-
chines is defined and addressed using state reachability and distinguishability
[15]. Furthermore, analogously to cover automata, an [-minimal Mealy machine
is defined for any [ > 1; this is a Mealy machine M having the least number of
states among all Mealy machines M’ that produce identical output sequences
in response to any input sequence no longer than the upper bound [. Like in
the case of finite automata, the minimal Mealy machine (for a given machine)

is always unique [15], while many I-minimal Mealy machines may exist [22].

3. Bounded sequence testing from Mealy machines

Suppose our system is modelled by a Mealy machine and we would like to test
its unknown implementation. The W-method [10] assumes that it is possible to
estimate the maximum number of states of the implementation and generates a
test suite that, if applied to the implementation and all tests pass, will guarantee
that the implementation is functionally equivalent to the model. More precisely,
if Cf is the set of all Mealy machines with the same input and output alphabets
as M having no more than k more states than M, k > 0, the W-method will
produce a finite set X} of input sequences such that, for every M’ € Cy, M
and M’ will produce identical output sequences on every sequence in Xy, if and
only if M and M’ are functionally equivalent (they produce identical output
sequences in response to any input sequence).

More recently, W-method has been adapted to generate test suites from finite
cover automata [22]. Here, given an upper bound [, the generated test suite Yy,
will have the property that, for every M’ € Cy, M and M’ will produce identical
output sequences on every sequence in Yy if and only if M and M’ produce
identical output sequences in response to any sequence of up to [ elements.
Naturally, Y} may be the set of all sequences in 3[I], but usually, since [ is fairly
large, this is impractical. The W-method, on the other hand, will produce test
suites of a much lower size. The technical details of the method, largely from

[22], are given below.
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Let M = (X,T,Q,q0,6,\) be a Mealy machine. Given a state ¢ of M,
levelpr(q) is defined to be the length of the shortest input sequence(s) that
reach g, i.e., if §(qo, s) = ¢ then length(s) > levelp(q),Vs € X*. Let [ > 1 and
suppose M is [-minimal (this does not restrict the applicability of the method
since minimization algorithms, such as the algorithm provided in [27], can be
applied beforehand). Then a proper state cover and a characterisation set, as

defined next, exist.

Definition 5. S C X* is called a proper state cover of M if, for every state

q € Q, there exists s € S such that d(qo, s) = q and length(s) = level(q).

Definition 6. W C X* is called a strong characterisation set of M, if for every
two states ¢1,¢q2 € @ and every j > 0, if ¢; and g2 are X[j]-distinguishable then
¢1 and g9 are (W N X[j])-distinguishable.

Note that, in the above definition, it is sufficient for the implication to hold
when j is the length of the shortest sequence that distinguishes between ¢; and
q2.

Then, as proved in [22], a test suite for M with respect to the fault model
consisting of all Mealy machines having no more than k extra states than M,

k > 0, can be constructed using the formula:
Y = STk 4+ 1J(W U {e}) nZ[]\ {e}.

Therefore a test suite can be obtained from the concatenation of three sets: a
proper state cover S, the set X[k + 1] of all input sequences of length up to k+1
and a a strong characterisation set W to which the empty sequence € is added.
Naturally, only sequences of length less than or equal to [ are extracted from

the resulting set and the empty sequences is also removed.

Theorem 1. Let I > 1 and M = (X,T,Q,q0,5,\) be an l-minimal Mealy
machine. Let S and W be a proper state cover and a strong characterisa-
tion set of M, respectively. Then, for any k > 0 and any Mealy machine
M = (Z,T,Q,4q,d,N) such that card(Q’) — card(Q) < k, the following holds:
Ago(8) = )\;(,) (s),Vs € Z[l] if and only if Mg, (t) = )\;(,) (t),Vt € Yy.

12



As a finite automaton can be rewritten as a Mealy machine, the above result
will be used in the remainder of the paper to test deterministic (cover) automata

and their generalizations, X-machines.

4. Learning cover automata from queries

Learning finite automata from queries was introduced by Angluin in 1987 [6];
the paper also provides an algorithm, called L* for addressing this issue. The
setup is as follows: a learner seeks to construct a (minimal) deterministic finite
automaton for an unknown regular language L by repeatedly asking queries to
a teacher and an oracle. Two types of queries can be addressed. First, given an
input sequence s, the learner may ask if s € L; this is called a membership query.
On the basis of the responses received, the L* produces a candidate automaton.
At this point, the learner may ask the oracle if this is the correct automaton, i.e.,
if it accepts the regular language L; this is called an equivalence query. If the
response is negative, the oracle will also provide a counterexample, that will be
used by the algorithm to start the construction of a new candidate automaton.
Using both membership and equivalence queries, the L* will construct a minimal
deterministic finite automaton A for the language L in polynomial number of
steps in the number of states of A. The algorithm has been adapted to construct
a minimal deterministic finite cover automaton of a finite language U [23]. The
resulting algorithm, called L' is described next.

Similarly to L*, the L' algorithm uses two types of queries: membership
queries and language queries. Let [ > 0 be length of the longest sequence in
U. The L' algorithm constructs two sets: a non-empty, prefix-closed, set of
input sequences S € ¥* and a non-empty, suffix-closed, set of input sequences
W e ¥*. S is used to reach the states and W to distinguish between the states
of the candidate automaton. S and W will be constructed such that S will only
contain sequences of up to [ inputs, while W will only contain sequences of up
to [ — 1 inputs.

The algorithm also keeps an observation table. The rows in the table are

13



labelled by the elements of (SUSX)NX[l], while the columns are labelled by the
elements of W and each element in the table is formed from the concatenation
of the row label s € (SUSX)NX[l] and column label w € W and is assigned one
of the values 0, 1 or —1. Thus, the observation table can be formally described
by a mapping T : ((SUSE)NX[])W — {0,1,—1}. For s € (SUSE) N X[l
and w € W, the value of T(sw) is established through the membership query:
if sw € U then T'(sw) = 1; if w € E[I] \ U then T'(sw) = 0; if sw is longer
than [ (sw ¢ X[l]), the response produced by the candidate automaton to be
constructed is not relevant, so T'(sw) is given a third value, —1, i.e., T(sw) = —1.

In order to compare the rows in the observation table, a relation on these
rows, called similarity, is defined. Given, k, 1 < k < [, rows s and s’ are
said to be k-similar, written s ~j s’ if, for every w € W with length(w) <
k — max{length(s),length(s’)}, T(sw) = T(s'w). That is, all corresponding
values sw and sw’ in rows s and s’ coincide for every column w for which sw
and s'w have at most k elements. Otherwise, s and s” are said to be k-dissimilar,
written s ~; s’. Using this similarity relation, two properties of an observation
table are defined: consistency and closedness. The observation table is said to
be consistent if, for every k, 1 < k < I, whenever rows s € S and s’ € S are
k-similar, rows so and s'c are also k-similar for all o € X. The observation
table is said to be closed if, for any row s € S, there exists row s’ € S with
length(s’) < length(s), such that s ~ s'.

Initially, S = W = {e}. The L algorithm periodically checks the consistency
and closedness properties of the observation table. If the observation table is
not consistent then a suitable new column is added; similarly, a new row is
added when the table is found not to be closed. When both conditions are
met, a candidate DFA, denoted A(S,W,T) is constructed from the consistent
and closed observation table. A language query is then addressed to the oracle;
if the candidate DFA is a cover automaton of A(S,W,T) (i.e., the language
L accepted by A(S,W,T) satisfies L N X[]] = U) then the algorithm ends;
otherwise, the counterexample produced by the oracle is used by L' to start a

new iteration and produce a new candidate DFA. The pseudocode description
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of the L algorithm between two language queries is given in Figure 1.

Given a consistent and closed observation table, the candidate DFA A(S, W, T)
is defined as follows. Given s € SU SX, the minimum sequence ¢t € S according
to the quasi-lexicographical order on ¥* for which s ~; ¢ is denoted by r(s) (in

particular r(e) = €). Then A(S,W,T) = (,Q, qo, F, 5), where
e Q={r(s) | se Sk
® g =c¢
o F={t|teQ,T(t) =1}

e 0(t,0) = r(to) (the consistency and closedness properties ensure that ¢ is

well-defined [23]).

Using both membership and language queries, the L! algorithm will find a
minimal DFCA of U in polynomial time. For more details, we refer the reader

to [23].

5. Modelling and testing using X-machines

In this paper, the X-machine will be used as a vehicle for applying the pre-
viously presented modelling and testing techniques to spiking neural P systems:
an SN P system will be transformed into an X-machine using the learning al-
gorithm presented in section 4; then the testing technique described in section
3 will be used to generate tests from the X-machine model.

An X-machine is a type of extended finite state machine (extended automa-
ton) in which transitions between states are labelled by partial functions op-
erating on a data set X. The concept was originally introduced by Eilenberg
[15]. Subsequently, a variant, called stream X-machine, in which the data set is
composed of an input and an output stream of symbols and an internal memory
storage, was mostly used [19, 18]. In here, however, we use the general form of
the data set X. In order to use the X-machine as a modelling tool for spiking

neural P systems, we slightly modify its original definition in that the machine

15



may use a set of initial data values instead of only one. Such a construct was
referred by Eilenberg as an X-module [15]; however, in this paper we keep the
more well-known name of X-machine.

We now introduce the X-machine model and preliminary results to be used
for the testing approach developed in the next section; essentially, we revisit the
results given in [17] to allow for the more general definition of an X-machine

used in this paper.

Definition 7. An X-Machine (abbreviated XM) is a tuple Z = (X, ®, X, @, qo,9),

where:
e X is the (possibly infinite) data set;

e & is a finite set of non-empty (partial) functions of type X — X; the
set @ is called the type of Z, while each element of ® called a processing

function of Z;

Xy C X is the set of initial data values;

Q is the finite set of states;

qo € Q is the initial state;

d is the (partial) next-state function, § : Q X & — Q.

An X-machine Z can be regarded as a finite automaton with the arcs labelled
by functions from the set ®; in order to fit precisely Definition 2, the state space
can be extended with a non-final “sink” state, that collects all non-defined
transitions. The automaton Az = (®,Q U {sink}, g, Q,d) over the alphabet ®
is called the associated deterministic finite automaton (abbreviated associated
DFA) of Z. Z is said to be completely defined if for every ¢ € @ and every z € X,
there exists ¢ € ® such that © € dom ¢ and (q,¢) € dom 6. A specification
is usually completely defined but the results in this paper are not restricted by

this constraint.
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Definition 8. A computation of Z is a sequence zg . . . T, with g € X, z; € X,
1 < i < n, for which there exist ¢1,...,¢, € ® such that ¢;(x;—1) = zy,
1<i<n,and ¢;...¢, € L(Az). The set of all computations of Z is denoted
by Comp(Z).

A sequence of processing functions that can be applied in an initial data
value is said to be controllable. Controllable sequences are essential in testing
as these are associated with the machine computations. An X-machine for which
all sequences in the language accepted by the associated DFA are controllable is
called itself controllable. As it will transpire in section 6, the X-machine models
of spiking neural P systems produced by the method presented in this paper

will be controllable and, therefore, suitable for testing purposes.

Definition 9. A sequence ¢;...¢, € ®*, with ¢; € &, 1 < i < n, is said to
be controllable if there exist z¢ € Xo, x1,...,2, € X such that ¢;(z;—1) = =;,
1<i<mn. Aset P C ®*is called controllable if for every p € P, p is controllable.

Z is said to be controllable if for every p € L(Az), p is controllable.

Consider now black-box test generation from an X-machine model. In black-
box testing, the implementation under test is unknown, but we may assume that
it can be modelled by some element from a known fault model. Naturally, when
the model is an X-machine Z, we can safely assume that the fault model is a
set of X-machines with the same data set X, type ® and initial data values X
as the specification. The underlying strategy for X-machine based testing is to
reduce checking that the implementation under test Z’ conforms to the model
Z to checking that Az conforms Az and then to apply the W-method. As
the W-method, when applied to the associated DFA of the X-machine model,
will produce sequences of processing functions, a mechanism for translating
sequences of processing functions into sequences of actual data values (used in

testing) is needed. Such a mechanism is the test transformation defined next.

Definition 10. Given an X-machine Z = (X, ®,z,Q, qo,0), a test transfor-
mation of Z is a function 7 : ®* — X* U {L}, L ¢ X*, such that, for every

D1, Pn € P, n>0,and p = ¢ ... oy, 7(p) meets the following requirements:
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e If p is controllable then

—If ¢1...¢n € L(Az) then 7(¢1...¢p) = x0...2, for some zy € X,
Z1,...,%, € X such that ¢;(z;—1) =z, 1 < i < n;

— Else 7(¢1...¢n) = Zo...Tpg+1, for some xg € X, X1,...,Tpn, €
X such that ¢;(xi—1) = x;, 1 < i < ng, where ng is such that
1. Pny € L(Az) and @1 ... ¢por1 & L(Az);

e Else 7(p) = L.

In other words, 7 maps a controllable sequence of processing functions p =
@1 ...¢n € @ that is a path in the associated automaton Az onto a sequence of
data values xzg ...z, that exercises that path. On the other hand, if p is not a
path of Az, then the longest prefix pg = ¢1 ... ¢p, of p that is a path of Az is
sought and 7(p) produces a sequence xy . ..Zn,+1 that attempts to exercise pg
plus one extra arc, ¢,,+1. Given a controllable sequence of processing functions
p, 7(p) will be used in testing to establish if the path p is accepted by the
associated automaton of the unknown model Z’ of the implementation. On the
other hand, non-controllable paths are not useful in testing, so 7(p) = L for any
non-controllable sequence p.

As our testing strategy is to reduce checking that the implementation model
Z' conforms to Z to checking that Az conforms to Az, it must be possible to
identify the processing functions applied from the computations of Z and Z’
examined in the testing process. Therefore, the concept of identifiable type,

defined below, is needed.

Definition 11. @ is called identifiable if, for every ¢, ¢o € ® for which there
exists € X such that ¢1(x) = ¢a(x), then ¢1 = ¢o.

When @ is identifiable, it is possible to establish if a controllable sequence of
processing functions is correctly implemented by examining the computations
of the specification Z and of the implementation Z’. This result is given next.
Theorem 2. Let Z = (X, ®,x0,Q,qo,9) and Z' = (X, P, z0,Q’,q), ") be two

X-machines and T a test transformation of Z. If ® is identifiable then, for
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every @1, ..., Pn € ® such that p = ¢y ... ¢, is controllable, the following holds:
if T(p) € Comp(Z) < 7(p) € Comp(Z'), then p € L(Az) < p € L(Az).

Proof. “=": Suppose p € L(Az). Since p is controllable, by Definition 10,
T(¢1...0n) = g ...x, for some g € Xo, 1,...,2, € X such that ¢;(z;—1) =
zi, 1 < i < n. Then x¢...x, is a computation of Z and so zg...xz, is a
computation of Z'. Then there exist ¢}, ..., ¢, € ®such that @] ... ¢, € L(Az)
and ¢}(z;—1) = z;, 1 <i <n. As ® is identifiable, using a simple induction, it
follows that ¢; = ¢;, 1 <i <n. Hence p € L(Az).

“<=": Suppose p ¢ L(Az). Then, by Definition 10, 7(¢1 ... ¢n) = Zo ... Tng+1,
for some xg € Xo, 1,...,Tn, € X such that ¢;(x;—1) = ;, 1 < i < ng, where ng
is such that ¢y ...¢n, € L(Az) and ¢1 ... ¢ne+1 ¢ L(Az). We provide a proof
by contradiction that ¢;...¢po+1 ¢ L(Az/). Assume ¢y ...¢po11 € L(Az).
Then 27 ...Zp,+1 is a computation of Z’ and so z1 ...x,,+1 IS & computation
of Z. Then there exist ¢7,...,¢;, ., € ® such that ¢;...4;, ., € L(Az) and
@h(xim1) = x4, 1 < i < ng+ 1. Since @ is identifiable, by induction it follows
that ¢; = ¢;, 1 < i < mng+ 1. Then ¢1...¢n,+1 € L(Az). This provides a

contradiction, as required. O

The above result can be used to generate a test set from an X-machine model
Z in which all paths of the associated automaton are controllable. When only
computations whose length does not exceed an upper bound [ are of interest,
the W-method for bounded sequences (Theorem 1) is applied to produce se-
quences of processing functions from the associated automaton Az, which are
then translated into actual data sequences using a test transformation. This is
the strategy used in the next section for generating test sequence for an SN P

system.

6. A testing approach for SN P systems

We can now use the previously presented results to devise our testing strat-

egy for SN P system models. Essentially, our approach involves two steps:
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e Rewriting the SN P system as an X-machine; more specifically, an approz-
imative X-machine model Z; of the system under test will be produced

using the L! algorithm;

o Test suites are derived from Z; using the W-method for bounded sequences

(more precisely, its extension to the X-machines presented here).

First, let us examine how an SN P system can be rewritten as an X-machine.
Let IT = (O, 01,...,0m,syn,in,out), o; = (n;, R;),1 < i < m, be an SN P
system. We consider that IT reads from the environment a binary sequence
of 0s and 1s (for convenience, in our running examples we also use a special
end marker, but this does not alter the validity of the theoretical results given
below). In each step, the first element is removed from the sequence until all
elements have been exhausted; if this is an 1, the input neuron will receive a
spike.

Then IT can be transformed into an X-machine Z = (X, ®, g, Q, qo, 6), where

e X =N™x{0,1}%;

®={¢|¢=(Y1,...,%n) and 1; = 1, for some r; € R; or ¢; = e;,
1 <i<m}withe; ¢ {tr, |1 € Ri}, 1 <i<m;

o Xo={(n1,...,nm)} x{0,1}%

Q=1{q9,q0};
® 5(qo,®) = qo, Vo € @\ {(e1,...,em)}; d(q,(e1,...,em)) = q1, Vg € Q.

A data value x € X will be a tuple holding the configuration of II and the
current binary sequence to be read. An initial data value zy € Xy will hold
the initial configuration and the binary sequence originally supplied to II. The
type @ counsists of all processing functions ¢ = (¢1,...,¥y,), where 9; is either
of the form ,,, r, € R;, or is e;, 1 < i < m. The component function .,
corresponds to the application of the rule r; € R; in neuron o;, 1 < ¢ < m, on

the configuration of II, while e; indicates that no rule is applicable in o;; also,
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the first element of the binary sequence is removed (passed on as a spike to the
input neuron), if this is not empty. While there is at least a neuron in which
a rule can be applied, the X-machine Z remains in state go; otherwise (when
a halting configuration of II is reached), Z enters state ¢;. Consequently, all
computations of II are realized in state gy of Z, the sole purpose of state g
being to “collect” the non-defined transitions so that Z is completely defined.
Finally, note that, although the SN P system might have a final neuron, the
corresponding X machine does not consider it as being a special neuron. As
mentioned earlier, the values of the spikes in all neurons will be observed.
From the above definition of the X-machine Z associated with the SN P
system II, one can observe that whenever in each computation step, whereby in
each neuron o; at most one rule r; is applied, with r; € R;, 1 <4 < m, a unique
function ¢ = (¢1,...,%m), ¢ € ® is applied in Z. The component function

¥;, 1 <4 < m, is either v,,, when r; is applied in oy, or is e;, otherwise.
Example 1. Let us consider the SN P system
Hl = (Oa 01,02,03,04,05,06, SYN, 17 6)a

where
e 0= {a}

e 01 =(0,{ri1:a—a,r2:a®>— a%}),
=(1,{re:a —a}),
03—(0 {rs1:a—a,r3o:a®> = erss:a®—e}),
04=1(0,{rg1:a®> > a,r42:a—€r13:a>—€}),
o5 = (0,{rs5:a — a}),

o6 = (0,0);
® syn = {(17 3),(1,4),(2,5),(5,3),(5,4),(3,5), (4,5), (4,6)).

The diagram of the SN P system II; showing the neuron cells and synapses

is presented in Figure 2.
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IT; reads from the environment a binary sequence such that, for every 1 a
spike will be brought into o1, whereas a 0 will not bring anything. Furthermore,
the sequence ends with a marker, denoted by 6, which brings two spikes into
the input neuron. The initial configuration of I; is (0, 1,0,0,0,0). II; will start
by acting on the first element of the input sequence and by sending a spike
from oy to o5. For each next step until the last element of the input sequence
is processed, a spike from o5 will be sent to both o3 and o4 and if a spike is in
o1 then this will be sent to o3 and o4 using 71,1, otherwise nothing will be sent
to them. In the case of a spike received by both o3 and o4, we end up with two
spikes in each of them and in o3, 3 2 is used and the spikes are removed, whereas
in 04, 74,1 Will send a spike to both o5 and 0. When no spike is received by o3
and o4 (this means a 0 was read from the environment), we have only one spike
in each of the neurons o3 and o4. Then the rules r3 ; and 74 2 are applied. One
can notice that in each step, o5 will receive a spike either from o3 or o4 and
whenever a 1 is read from the environment, a new spike is finally added to oy,
and when a 0 is read, it will be eventually consumed by o3. The whole process
stops when the end marker 6 is received and two spikes are brought into o1; in
this case, the rule 71 o will send them to o3 and o4. Then, with the spike from
o5, there will be three spikes in each of them and the rules 733 and ry 3 will
remove them and the process stops. When the input sequence is not empty,
i.e., it has a non empty sequence of 0 and 1, the neuron o5 has one more spike
received in the previous step, either from o3 or o4. In the next step, this will
be sent to o3, which will consume it through r3; and o4, which will remove it,
by applying r42. Hence the final result, obtained in og, will remain unchanged.
Therefore II; counts the number of 1s in the input sequence.

Note that one can count 0s as well, simply by introducing a new neuron
connected only to o3. In this case the rule r3 ; will also send a spike to the newly
created neuron whenever a single spike appears in o3. So, this new neuron will
get the number of spikes that gives the number of Os from the input sequence.
In this case, when the input is not empty the number of spikes coming from o3

is the number of Os from the input sequence plus 1.
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One can now built the X-machine Z; according to the above-mentioned
procedure. The initial set of values is Xy = {(0,1,0,0,0,0)} x {0,1}* (i.e.,
initially, there will be a spike in o9 and nothing in the rest). We now define the

functions of ® as tuples.

The function that will be applied first to a value in X is ¢1 = (e1, ¢y, €3, €4, €5, €6).

This corresponds to the first step in II;, whereby only ro is applicable in
02, denoted by the function ., The next functions applicable are ¢, =
(11, e2,e3,€4,%r5,€6), 0 = 1,2, where ¢1 = ey, in ¢2,1 when there is no spike in o1
and ¢y = ¥, ,,in ¢2 2 when a spike is in 1. Then, if the input from the environ-
ment has more than one digit, then, in the next steps of the computation, one of
the following 4 functions is applicable: ¢3,; = (¢1, €2, 3,14, Pr,, €6), 1 < i < 4,
where ¢ = e1, and ¢3 = ¢y, |, s = p, ,, In P31 and 3 =y, ,, P4 =y, ,, In
¢3,2. Similarly, for ¢1 = 1., |, we define ¢33 = (P, |, €2, Vry s Vry 5, Yry, €6) and
¢34 = (Ury ,,€2,0rs 5,0, 1, Urs, €6). Finally, when the end of the input is de-
tected, the following functions are applicable: ¢4 ; = (Vr, ,, €2,¥3, V4, Vry, €6),
1 < i <3 where th = eg,0 = eq, When i = 1, g = ¥y, = Uy,
when i = 2 and 3 = ¥, ,,%4 = t¥p,,, when i = 3. The last functions are
G511 = (€1, €2, Vry 5, Vry 5, €5,66) and @52 = (e1,€2,Yrg 5, Vry 5, Urss €6). We do
not consider the final two steps mentioned for IT;, when the input is not empty.
An extra processing function ¢g = (e, €2, €3, €4, €5, e) will also be needed for

the case in which no rule is applicable in II;.

Theorem 3. Let Il and Z as above and let ¢y, ..., ¢, € N™, co = (R1,..., )
and by,...,by € {0,1}, k > 1. Then cg...c, is a computation of 11 if and

only if xo...x, is a computation of Z that keeps Z in state qy, where ro =

(coyb1 - br)yee oy = (Chy€)y ooy Ty = (Cny€), if k <nandxzy = (co,b1...0k),. ..

(cnybk—n ... bi), otherwise.
Proof. Follows from the construction of Z. O

However, the X-machine Z above defined cannot directly be used for test-

ing purposes since it is not controllable (for instance, in our running example
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sequences ¢1¢3;, 1 <4 < 4, are not controllable since o2 cannot send spikes to
os or o4 and, consequently, ¢ ; cannot be applied after ¢1).

Our approach is to construct a controllable X-machine model using a learning
algorithm. Furthermore, in order to keep state explosion under control, the L!
learning algorithm is used to construct an approximation of the SN P system
that preserves all its computations that do not exceed a chosen upper bound.

Let IT be as above and let [ > 0 be the chosen upper bound. The application
of the L' algorithm for learning an approximative X-machine model Z; of an SN
P system II is detailed in what follows. The data set X, the set of initial data
values X and the type ® are defined as above; we assume that ® is identifiable
(the implications of this assumption are discussed in more detail in the next
section). The L! algorithm is then used to learn the associated automaton Az,
of Z;. However, since the labels ® are processing functions, not mere symbols,
the value of the mapping T' will be established by examining the data values
produced by the machine.

Consider a sequence of processing functions, p = ¢1 ... ¢, € ®*. Naturally,
only sequences whose length does not exceed the upper bound will be of interest,
the others will be assigned the value —1. When n < [, we will distinguish
between controllable and non-controllable paths; as, for testing purposes, our
model will need to contain only controllable paths, the noncontrollable sequences
of processing functions will be excluded by assigning them the value 0. Finally,
for controllable paths p, the value of T'(p) will be established by examining the
data values produced along p. We can now assemble the above situations to

provide a definition for T'.

Definition 12. Consider the setup for the learning algorithm described above.
Then T : ®* — {—1,0,1} is defined as follows. For a controllable sequence
of processing functions p = ¢1...¢, € ®", n > 0, we denote by comp(p)
any sequence Tori ...ZTn, To € Xo, T1,-..,Tn € X such that ¢;(x;—1) = z;,
1 < ¢ < n. Then, for every p=¢1...0n, ¢1,...,0n, € &, n >0, T(p) is defined
by:
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o If n <[ then

— If p is controllable then

x If comp(p) is a computation of Z then T'(p) = 1;
* Else T'(p) = 0;

— Else T'(p) = 0;
e Else T'(p) = —1.

Naturally, T is not necessarily uniquely defined as, for a controllable p,
there may exist many sequences zgz1 ... x, as above. On the other hand, it will
transpire that the choice of the data values does not influence the outcome of
the learning algorithm.

We prove now that Z; reproduces the behaviour of Z when bounded com-

putations are considered.

Lemma 4. Let Z, | and Z; be as above. Suppose @ is identifiable. Let C; be
the set of all controllable sequences of processing functions in ®[l] and U, =

L(Az)NCy. Then Az, is a DFCA of U,.

Proof. Let p = ¢ ... ¢, € ®* be a controllable sequence of processing functions
and let ¢ € Xy, z1,...,2, € X as in Definition 12. Since @ is identifiable, by
induction on i, 1 < i < n, it follows that p € L(Az) if and only if xq ...z, is
a computation of Z. Then T'(p) = 1 if and only if p € L(Az). Thus, for any
sequence p = ¢y ... ¢, € ®[l], T(p) = 1 if and only if p € U. Therefore the L'
algorithm will return a DFCA of U;. O

Theorem 5. Let Z, | and Z; be as above. Suppose ® is identifiable. Then
Comp(Z)N X[l + 1] = Comp(Z;) N X[l + 1].

Proof. By Lemma 4, Az, is a DFCA of U; = L(Az)NCY, with C; being the set of
all controllable sequences of processing functions in ®[{]. Then the result follows

since the non-controllable paths in Z do not produce extra computations. [J
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Furthermore, from construction, all paths of Z; whose length does not exceed

the upper bound [ are controllable.
Theorem 6. Let p € ®[l]. If p € L(Az,) then p is controllable.
Proof. Follows from Definition 12. U

Example 2. Consider again our running example (IIy and Z; in Example 1). It
can be observed that the set of processing functions ® of Z; is identifiable (more
precisely, II; is a deterministic SN P system according to Definition 13 given in
the next section; Theorem 8 shows that such systems produce X-machines for
which @ is identifiable). Then, according to Lemma 4, for any upper bound I,
the learning algorithm presented above will produce a DFCA of Uj, the set of
controllable sequences of length up to ! in L(Agz, ).

Let us examine the sequences of processing functions that can be triggered
from some initial data value. Recall that the end of the input string fed to IT;
(providing two spikes to 0, ) is denoted by 6. Then Table 1 shows the sequence
of processing functions triggered in Z; by sequences of inputs of length up to 4
applied to II;.

Table 2 shows the sequences of processing functions of length up to 4 that
can be triggered in Zp; these are the sequences of processing functions from
Table 1 and their prefixes of length up to 4.

Using the sequences in Table 2, one can construct a DFCA of U; for | < 4.
For the sake of simplicity, we only provide a DFCA of Us, as depicted in Figure
3 (in order to have the model completely defined, a loopback transition labelled
by ¢ has been added to gs).

As all paths of Z; of length at most [ are controllable and & is identifiable, we
can now apply the W-method for bounded sequences and Theorem 2 to generate
test sets from Z;. The theoretical basis for our testing strategy is Theorem 7
below.

Let Z; = (X, ®,20,Q,q(,9’). As discussed in section 2.4, the associated

automaton Az, can be rewritten as a Mealy machine M;. Let S be a proper
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Input sequence applied Functions triggered
no input b6

0 D1 Pa1 P51

00 1 92,1 a2 P52

16 1 P22 P43 G52

006 d1 2,1 P31 Pa2 P52
016 1 P21 P33 Pa3 P52
106 1 22,932 Ga2 G52
116 1 P22 P34 P43 P52
0006 $102,103,103,104,2¢5,2
0016 1 P21 P31 P33 Pa3 P52
0100 1 P21 $3.3 $3,2 Pa2 P52
0116 1 2.1 ¢33 $3.4 P43 P52
1006 1 P22 P32 P31 Pa2 P52
1016 1 G222 $3.2 $3.3 P43 P52
1100 D1 P22 O34 P32 Pa2 P52
1116 1 P22 P34 P34 Pa3 P52

Table 1: Input sequences and sequences of functions triggered

state cover of M; and W a strong characterisation set of M;, respectively, and
let 7 be the test transformation of Z;. Then, given k > 0, the set we are after

is T}, = 7(Y}), where
Y, = SOk + 1](W U {e}) n @[] \ {e}.

Example 3. Consider again our running example and let | = 3 and Z3 the
X-machine whose state transition diagram is as represented in Figure 3. States
0+ 91,92, g3, 4 and g5 are reached by so = €, s1 = ¢1, 52 = 1 P41, $3 = P1 P21,
54 = @1 P22 and s5 = ¢, respectively, and these are the sequences of minimum
length having this property. Therefore S = {sq, s1, s2, 83, 84, S5} 1S a proper

state cover of the Mealy machine associated with Az,. On the other hand, it
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Length | Sequences triggered

1 b6

¢1

2 1 Ga1

o1 P21

D1 P22

3 D1 P41 P51
1 P21 Pa2
D1 P21 P31
®1 P21 b33
D1 P22 Pa3
D1 P22 P32
D1 P22 P34

4 @1 P2,1 Pa2 P52
1 2.1 93,1 a2
1 P21 P31 P31
1 P21 P31 P33
1 21 P33 a3
D1 92,1 P33 P32
1 P21 ¢33 P34
1 P22 Pa3 P52
D1 P22 032 Pa2
$1 P22 P32 P31
1 P22 P32 P33
1 P22 P34 Pa3
D1 P22 O34 P32
1 P22 P34 P34

Table 2: Sequences of functions triggered of length up to 4
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can be observed that all pairs of states of Az, can be distinguished by singletons;
e.g., wo = ¢ distinguishes gy from any other state, w; = ¢4,1 distinguishes ¢;
from any other state, wy = ¢5,; distinguishes ¢o from any other state, ws = @42
distinguishes g3 from any other state, ws = ¢4 3 distinguishes g4 from any other
state. Therefore W = {wg, w1, ws,ws,wy} is a strong characterization set of

the Mealy machine associated with Az,.

The theorem below shows that, for sequences of length at most [, the test
suite constructed above will detect all faults of an implementation whose model
is in the fault model consisting of all X-machines whose number of states does

not exceed the number of states of Z by more than k.

Theorem 7. Let Z;, k and Ty, be as above. Suppose ® is identifiable. Then, for
any X-machine Z" = (X, ®,x9,Q", q{f,0") such that card(Q") — card(Q") <k,
Comp(Z) N X[l + 1] = Comp(Z") N X[l + 1] if and only if Comp(Z)) N Ty, =
Comp(Z") N Ty,.

Proof. “=": Since Comp(Z;)NX[l+1] = Comp(Z")N X[l +1], it follows that
Comp(Z)NX[I+1]NT, = Comp(Z")N X[l 4+ 1]NT}. Since X[I+1]NTy = Ty,
the required result follows.

“«=": Suppose Comp(Z;) N T, = Comp(Z") N T.

Let p € Yy be a controllable sequence of processing functions. Then 7(p) €
Ty. Since Comp(Z;) N Ty, = Comp(Z") N Ty, 7(p) € Comp(Z) if and only if
7(p) € Comp(Z"). Then, by Theorem 2, p € L(Az) if and only if p € L(Az»).
Since p € Y}, is arbitrarily chosen, it follows that, for every controllable sequence
of processing functions p € ®*, p € L(Az ) NY} if and only if p € L(Az~) NY.
Then, by Theorem 1, for every controllable p € ®*, p € L(Az,)N®[l] if and only
if pe L(Az»)N®[l]. Thus, Comp(Z;) N X[1+ 1] = Comp(Z")NnX[1+1]. O

7. Identifiable SNPS

As shown by Theorem 7, the complete fault-detection of our testing strategy

is guaranteed if the type ® of Z is identifiable. In this section we investigate this
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property and identify particular cases of SN P systems for which the resulting
X-machine Z satisfies this condition.
First, it can be observed that this condition is satisfied whenever the SN P

system in question exhibits deterministic behaviour.

Definition 13. An SN P system II = (O, 01, ..., 0m, syn, in, out) of degree m is
said to be deterministic if, for every i, 1 < i < m, and every two distinct spiking
rules r;, 7, € R; of neuron o; of the form E,/a° — aP* and E,/a® — aPv,

respectively, L(E,) N L(E,) = (.
It can be observed that the SN P system in Example 1 is deterministic.

Theorem 8. LetII = (O,01,...,0m,syn,in,out) be an SN P system of degree
m and Z = (X, ®,xz0,Q, qo,9) the resulting X-machine. If I1 is deterministic
then ® is identifiable.

Proof. Let ¢, ¢’ € ® be two processing functions of Z, ¢ = (¢1,...,%m), ¢ =
(4, ..., 9! ). Suppose there exists x € X such that x € dom ¢ Ndom ¢'. Let
x = (¢,b), where ¢ is the current configuration of II and b the binary sequence
supplied to II. Then, for every 4, 1 < i < m, 1); and ¢} are applicable in ¢. Since
IT is deterministic, 1; =), 1 <i < m. Thus ¢ = ¢'. O

A more general case in which the resulting @ is identifiable is given by the

following definition.

Definition 14. An SN P system II = (O, 01,...,0m, syn, in, out) of degree m
is said to be observable if for every i, 1 < i < m, at least one of the following

conditions are met:

1 for every two distinct spiking rules r;,r, € R; of neuron o; of the form

E;/a® — aP* and E,/a® — aPv, respectively, L(E,) N L(E,) = 0;

2 (4,i) ¢ syn, for all j, 1 < j < m, and for every two distinct spiking rules
Ty, Ty € R; in neuron o; of the form E,/a® — aP* and E,/a® — aPv, if

L(E,) N L(Ey) # 0 then ¢, # c,.
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In other words, every neuron of II either (1) exhibits deterministic behaviour
or (2) it cannot receive spikes from other neurons and any of its two spiking

rules that overlap remove different number of spikes.
Example 4. Let us consider the following SN P system
I, = (0,01,09,syn, 1,2),
where
e O={a};

e 01 =(0,{r11:aa/a — a,r12:aa/a® = a,r13:a> = e,;r14:at =€ }),

09 = (0,@),
o syn = {(1,2)}.

The SN P system II, reads from the environment a binary sequence such that,
for every 1, a spike will be brought into o1, whereas a 0 will not bring anything.
The sequence ends with an entity coding for three spikes that will be brought
into the input neuron. Whenever two spikes are accumulated in o; either r; ;
or 71,2 will be used in a non-deterministic manner. The system stops when the
final marker is read, by using one of the rules ry 3,71 4. It can be observed that

II5 is observable but not deterministic.

Theorem 9. Let I1 = (0,01,...,0m, syn,in,out) be a SN P system of degree
m and Z = (X, ®,x0,Q, qo,0) the resulting X-machine. If I is observable, then
® is identifiable.

Proof. Let ¢, ¢’ € ® be two processing functions of Z, ¢ = (¢1,...,%m), ¢ =
(4, ..., ). Suppose there exists € X such that € dom ¢ N dom ¢ and
¢(z) = ¢'(x). Let x = (¢,b), where c¢ is the current configuration of II and b
the binary sequence supplied to II. Then, for every i, 1 < i < m, 1; and ]
are applicable in ¢. Consider one such ¢, 1 < ¢ < m. If the first condition of
Definition 14 is met in neuron 4 then ¢; = .. Otherwise, the second condition

must be met. If we assume that t; # ] then the number of spikes in neuron
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o; after the application of v¥; will differ from the number of spikes in neuron o;
after the application of .. Consequently ;(x) # 9}(x), which contradicts the
assumption that ¢(x) = ¢’(z). Thus ¢, = ¢;. Hence ¢ = ¢'. O

8. Discussion

Naturally, the successful application of our method will depend on the ability
to construct an X-machine approrimation suitable for our purposes and the
choice for upper bound [ is a key aspect in this respect. Obviously, larger [ will
produce approximations increasingly close to the actual model, but this may
result in very complex, often unmanageable models and, on the other hand,
very long sequences are not the norm in testing. One possible solution to this
problem is the use of coverage criteria for assessing the approximations obtained.
Code coverage is a very widespread means of assessing the effectiveness of test
suites in white box testing: here the suites are selected so that they cover
some selected elements of the program under test. Most usually, these are the
program statements (or the nodes in the graph associated with the program)
or the branches between nodes [40]. These ideas can be translated to model-
based testing, yielding the concepts of state coverage and transition coverage,
respectively [4, 40]. An even more powerful coverage criterion is based on the
pairs of transition symbols covered by a test suite; the percentage of the pairs
of symbols covered by the test suite, also called switch cover, transition-pair or
two-trip is considered a powerful test coverage criterion and is included in the
British Computer Society standard for software component testing [4]. Using
this criterion, we can consider that a DFCA approximation is suitable for testing
purposes when, by gradually increasing the upper bound [, this metric stabilizes;
previous investigations suggests that this happens for reasonably low values of
1 ]26].

Note also that, when passing from the application of the L' algorithm for
a value of [ to the application of the algorithm for the next value, [ + 1, the

DFCA learning procedure does not start anew and the values of S and W from
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the previous iteration can be used as starting values for the next iteration of the
learning algorithm, with obvious time savings. Also note that the sets S and
W produced by L! are a proper state cover and a strong characterization set,
respectively, of the resulting DFCA, and so they can be used in the construction
of the test suite after a minimization process (typically S and W contain extra

sequences and these will be removed in order to obtain smaller test suites).

9. Conclusions

This paper proposes a testing approach for SN P systems that, under well-
defined conditions, ensures that the implementation conforms to the specifica-
tion and also provides a solution to the state explosion problem through the
construction of model approximations. The proposed approach consists of three

main steps:
e Rewrite the SN P system in terms of X-machines;

e Construct an approximative X-machine model Z; of the system using the

L' algorithm for learning DFCA;

e Derive test suites from Z! using the W-method for bounded sequences

(the variant of the method for X-machines).

The paper also investigates the concept of identifiable SN P systems, which is
essential for testing these systems. Naturally, a tool for supporting the proposed
testing method needs to be provided. This will be the subject of a future paper.
Case studies can then be performed to assess the effectiveness of the method
and of the strategies for selecting the upper bound proposed in Section 8.
Naturally, one possible future line of research is to seek to extend the current
strategy to other classes of P systems (e.g., cell-like P systems). The main
problem in this direction could be the maximally parallel mode in which the
rules may be applied and, consequently, the construction of the associated X-
machine may require some limitations to be imposed on the number of rules

applied in each cell in one computation step. Another relevant future research
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topic is the development of a direct way of building the DFCA approximations

from SN P systems (as well as other P system variants), without the translation

of these models into equivalent X-machines.
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DFCA learning procedure

Input: S, W and the current observation table T'.
Repeat

\— Check consistency —\

For every w € W, in increasing order of length(w) = i do
Search for s1,s2 € S with length(s1),length(s2) <1 —i—1
and o € ¥ such that s; ~y s2, where
k = max{length(s1),length(s2)} + i+ 1, and T'(s1o0w) # T(s20w).
If found then

Add ocw to W.
Extend T to (S U SY)W using membership queries.

\— Check closedness —\

Set new_row_added = false.

Repeat for every s € S, in increasing order of length(s)
Search o € 3 such that so ¢ t V¢t € S with length(t) < length(so).
If found then

Add so to S.
Extend T to (S U SX)W using membership queries.
Set new_row_added = true.
Until new_row_added or all elements of S were processed
Until ~new_row_added
Construct A(S, W, T).
Return A(S,W,T).

Figure 1: The learning procedure of L'
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Figure 2: SN P system II; diagram
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Figure 3: State transition diagram of a DFCA of Us
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